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Abstract—Memristive resistor (memristor) has at-
tracted many researchers’ attentions. In this study, we
report that there exist various bursting oscillations in a
memristor-based simple dynamic model. The successive
bursts are triggered by a gradually increasing memory re-
sistance (memristance) in the model. An average interburst
interval of the bursting oscillations is measured. In addi-
tion, the other oscillatory phenomena around the boundary
existing regions of the bursting oscillations are shown.

1. Introduction

Memristive resistor is an electronic component with re-
sistance that changes over time as a function of existing
state and the voltages applied across them and/or currents
driven through them. Such element (named as “memris-
tor”) was first predicted by L.O. Chua in 1971 [1], and the
implementation was reported by a team of Hewlett-Packard
company in 2008 [2]. Diverse applications for the circuit
element are expected in a wide variety of fields [3–11].
One of the examples is for neuromorphic learning systems,
because the memristor is regarded as a prospective candi-
date for developing nonvolatile analog synaptic devices in
a small size [4, 8, 9].

In our previous study [10], we studied a simple
memristor-based circuit model which is in the modified
form of the model [11], and reported memristive behaviors
with periodic injections of a pulse voltage. The model con-
sists of a few circuit elements (one linear resistor, one in-
ductor, one capacitor, one voltage source, and one voltage-
controlled memristor). In this study, we will study a dy-
namic model by replacing the linear resistance in the circuit
by a negative one, and by applying a DC backward voltage
source instead of the periodic pulse voltages. We are in-
terested in what happens if the above two parameter values
(the negative resistance and the DC backward voltage) are
changed in this dynamics.

In this paper, we investigate the memristor-based dy-
namic model numerically, and report that there exist inter-
esting nonlinear oscillations in the dynamics. In particular,
we will show that various bursting oscillations appear con-
tinuously in a certain parameter regime. If we apply a DC
backward bias voltage to the dynamics, the memristance
gradually increases with time, and eventually triggers the
burst oscillations of the other state variables. An occur-
rence rate of the bursts can be varied by changing the neg-

(a) Schematic drawing.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -3 -2 -1  0  1  2  3  4

f (
v)

v
(b) Memristor function f (v) ( α = 0.1 and β = 200).

Figure 1: The circuit model.

ative resistance value and/or the value of the DC voltage.

2. Circuit model

Figure 1(a) presents a schematic diagram of the circuit
model in which a capacitor C and a series of some ele-
ments (an inductor L, a negative resistor −R, and a DC
backward voltage source E) are connected in parallel to a
voltage-controlled memristor. Referring to [11], we adopt
the simple memristor model which takes into account the
activation change of its state. The memristance M changes
between two limiting values M1 and M2 (0 < M1 < M2).
Then, the time-varying state of M can be written as follows:

dM
dt
= f (v)[θ(v)θ(M − M1) + θ(−v)θ(M2 − M)], (1)

where v is the voltage applied across the memristor, f (v)
represents the voltage-controlled memristor characteristic
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(a) E = 0.05.
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(b) E = 0.2.

Figure 2: Time series plots of the state variables for E =
0.05 and E = 0.2 (R = 0.4).

(memristor function), and θ(·) is a step function. The
memristor function f (v) is written as in the form: f (v) =
−βv + 0.5(β − α)(|v + VT | − |v − VT |), where α and β are
positive constants, and VT is a threshold voltage.

From the Kirchhoff’s law, the circuit equation can be
represented as follows:

dv
dt
=

(
−i − v

M

)
C

,

di
dt
=

v + Ri + E
L

.

(2)

In the following results, we adopt the same parameter
values in [11]: M1 = 3.0Ω,M2 = 20.0Ω, β = 200, α =
0.1,VT = 2.5V, L = 2 H and C = 1F, and employ the values
of −R [Ω] and E [V] as control parameters. We solve the
Eqs.(1) and (2) by using Runge-Kutta method with a step
size h = 0.011. The initial condition (M0, v0, i0) is set to
M0 = 3.0 and v0 = i0 = 0.0, throughout this study.

1The order of complexity of the system is 3 referring to the Eq.(18)
in [1]. From the viewpoint of the memristor constitutive relation [12], the
state variables (v, i, ϕ(the flux)) may be appropriate. In this study, we
assume M(t) in Eq.(1) instead of the memductance W(ϕ) to describe the
voltage–current characteristic of the memristor.
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Figure 3: Magnified drawing of the first bursting oscillation
of Fig.2 (a).
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Figure 4: Average interburst interval T in terms of E for
three values of R.

3. Bursting oscillations

When we apply the DC backward bias voltage E = 0.1
in Fig. 1(a), various bursting oscillations appear in terms of
the value of −R2. Figures 2 (a) and (b) show typical ex-
amples of the bursting oscillations for R = 0.05 and 0.2,
respectively. In the results, the value of M gradually in-
creases with time, and the large amplitude of oscillations
of v and i (v– and i–bursts, respectively) appear in associ-
ation with increasing in M. To show what happened when
|v| exceeded the threshold value VT more in detail, in Fig.3,
we present magnified drawing of the bursting oscillations
of Fig.2 (a). When the |v| exceeds the threshold value VT ,
the value of M suddenly increases or decreases which is

2To observe various bursting oscillations as shown in this section,
we adopt the negative resistor and the backward DC voltage source in
Fig.1(a).
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shown at a certain time. This is because the memristor is
characterized by the piecewise-linear nonlinearity as shown
in Fig 1 (b) for α = 0.1 and β = 200, and the M changes
rapidly when |v| > VT , and moves slower when |v| < VT .

When we change the value of E, the rise velocity of the
M is changed, and an occurrence rate of the v– and i–bursts
can be varied as a consequence. For E = 0.2, compared
with the result for E = 0.05, frequent occurrences of the
bursts are observed in the same time domain. We measure
an average interburst interval (= T) of such bursting oscil-
lations for 0 5 t 5 106. The T corresponds to a long-time
average interval between two neighboring v–bursts. Fig-
ure 4 shows the T in terms of E for three values of R. From
the figure, the T becomes smaller for larger value of E in
any of three cases. For further large E, the bursting oscil-
latory phenomenon disappears. Instead, the other solution
presented in Fig. 5 is observed. There exists fluctuation
in the time series plots of the state variables as shown in
Fig. 5(a), and the corresponding trajectory and the points
on the Poincaré mapping in the v–i plane (we take mapped
points when the flow of the v penetrates the hyperplane
from + to −) is presented in Fig. 5(b)3. From the figures,
the amplitude of oscillation fluctuates over time although
the oscillation period is nearly periodic.

The bursting oscillations appear for 0.12 5 R 5 0.43
as far as our numerical results are concerned. Around the
upper boundary, there exist turbulent bursts. The turbu-
lent bursts mean that a disordered large amplitude of os-
cillation appears irregularly. For R = 0.44 and 0.45, such
turbulent bursts are observed as shown in Figs. 6(a) and
(b), respectively. Figure 7 shows the magnified drawing
of the oscillation in Fig.6 (b). On the other hand, around
the lower boundary of the existing region of the bursting
oscillations, the other kind of periodic oscillation appears.
Figure 8 shows that there exists the nonlinear periodic os-
cillation as a steady-state after transient.

4. Conclusions

We investigated the memristor-based dynamic model in
Fig. 1 numerically, and reported various oscillatory phe-
nomena. In particular, we observed that the successive
bursts are triggered by the gradually increasing memris-
tance in the circuit model with injection of the DC back-
ward bias voltage E. We measured the average interburst
interval of such bursting oscillations in terms of the E. It
should be noted that the occurrence rate can be changed
easily by modulating the values of E (and/or the −R). In
addition, we investigated the oscillatory phenomena around
the boundary existing regions of the bursting oscillations.

3We draw the both results for 1000 5 t 5 1400, so the transient is
removed.
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(a) Time series plot.
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(b) Trajectory and the mapped points in the v–i plane.

Figure 5: Oscillatory phenomenon observed for E = 0.35
and R = 0.4.

References

[1] L. O. Chua, “Memristor ― The missing circuit ele-
ment,” IEEE Trans. Circuit Theory, vol. CT-18, no. 5,
pp. 507-519, 1971.

[2] D. B. Strukov, G. S. Snider, G. R. Stewart, and R. S.
Williams, “The missing memristor found,” Nature, pp.
80-83, Mar. 2008.

[3] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T.
J. Cardinali, J. J. Yang, W. Wu, X. Li, W. M. Tong,
D. B. Strukov, G. S. Snider, G. Medeiros- Ribeiro, and
R. S. William, “Memristor― CMOS hybrid integrated
circuits for reconfigurable logic,”Nano Lett., vol. 9,
no. 10, pp. 3640-3645, 2009.

[4] B. L. Barranco and T. S. Gotarredona, “Memristance
can explain spike-time-dependent-plasticity in neural
synapses,” Nature Precedings, 31st, 2009.

[5] B. C. Bao, Z. Liu and J. P. Xu, “Steady periodic mem-
ristor oscillator with transient chaotic behaviours,”
Electronics Letters, vol.46, no.3, 2010.

[6] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J Yang, D. R.
Stewart, and R. S. Williams, “‘Memristive’ switches
enable ‘stateful’ logic operations via material implica-
tion,” Nature, vol. 464, pp.873-876, 2010.

- 866 -



-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0

 0  5000  10000  15000  20000

v

t

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

i

0.0

5.0

10.0

15.0

20.0

25.0

M

(a) R = 0.44.
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(b) R = 0.45.

Figure 6: Turbulent bursts (E = 0.1).
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Figure 7: Magnified drawing of the oscillation of Fig.6 (b).
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(a) Time series plot.
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(b) Trajectory and the mapped points in the v–i plane.

Figure 8: Periodic oscillation as a steady-state after tran-
sient (E = 0.1 and R = 0.11).
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