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Abstract—This paper describes an experimental proce-
dure for extracting the phase-sensitivity of an oscillator to
noise perturbations. The method relies on injection-locking
the oscillator and measuring the widths of the ranges over
which the oscillator synchronizes with an injected small-
amplitude signal. The resulting sensitivity function can be
employed to predict accurately how internal noise sources
contribute to output phase-noise and jitter. The experimen-
tal estimation procedure is applied to a relaxation oscillator
that exhibits strongly nonlinear behavior.

1. Introduction

There is great interest in the field of oscillator design in
understanding the sensitivity of an oscillator to noise [1, 2].
One way of capturing this is the so-called Phase Sensitiv-
ity Function Γ(t). If an accurate model of the oscillator is
available, then Γ can be computed numerically.

Maffezzoni introduced a method for determining Γ

which is based on measuring the widths of the locking re-
gions when the oscillator is injection-locked to a synchro-
nizing signal [3]. These widths are related ot the coeffi-
cients of the Fourier Serier (FS) expansion of Γ. Increas-
ingly better approximations to Γ can be obtained by calcu-
lating more FS coefficients.

We have previously developed an efficient method for
extracting the boundaries of Arnold tongues (locking re-
gions) in injection-locked frequency dividers (ILFDs) [4].
A variant of this technique is described in this work. In
particular, we calculate the widths of a number of tongues
and thereby determine the FS coefficiencts of Γ.

Although we illustrate the method for the same circuit
described by Maffezzoni, for which an analytical model ex-
ists, we emphasize that the technique works for oscillators
where an accurate simulation model is not available.

2. Arnold Tongue Scenario

Nonlinear dynamics provides a paradigm for frequency
entrainment (injection locking), namely the so-called stan-
dard circle map or sine map [5]. Consider a first (depen-
dent) oscillator with unforced frequency f0 that is driven by

a second (independent) oscillator with frequency fs. If the
phase θ of the first oscillator is sampled at the frequency
of the second oscillator, then samples are described by a
discrete-time dynamical system of the form:

θ[n + 1] = θ[n] + Ω −
k

2π
sin(2πθ[n]), (1)

where Ω = f0/ fs is the ratio of the unforced and injected
signals and k is the strength of the coupling.

The behavior of this system is summarized in a two-
dimensional bifurcation diagram, as shown in Fig. 1.

Figure 1: Bifurcation diagram summarizing typical lock-
ing behavior in an ILFD. The abscissa Ω denotes the rela-
tive forcing frequency; the ordinate k indicates the strength
of the coupling. The so-called “divide-by-ρ”regions corre-
sponding to constant values of the rotation number ρ are
called Arnold tongues (adapted from [5]).

The abscissa (horizontal axis) Ω in Fig. 1 shows the rel-
ative frequency of the injected signal and the ordinate (ver-
tical axis) k is the strength of the coupling between the in-
put signal and the oscillator. The bifurcation diagram is
organized into regions called Arnold tongues; the rotation
number ρ is constant inside each tongue.
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3. Phase Sensitivity Function

When a small-signal perturbation is injected into an os-
cillator, Maffezzoni [3] has shown that the externally in-
jected signal is dominated by the phase-sensitivity function
Γ(t) for some certain types of perturbation [1, 2]. The wave-
form of the function is T0-periodic and can be expanded in
a Fourier series of the form:

Γ(t) = Γ0 +

NH∑
k=1

Γk cos(kω0t + φk) (2)

where ω0 = 2π/T0 is the free-running frequency of the os-
cillator, Γk and φk are rational numbers, and NH is the num-
ber of significant harmonic components.

For harmonic oscillators, the phase-sensitivity function
is dominated by its first harmonic component Γ1; for non-
harmonic oscillators, the function can be affected by a few
significant harmonic components.

When the oscillator is in its locked state or, in other
words, when 1:m synchronization behavior occurs (the so-
called “divide-by-m” locking region), the lower and upper
boundaries (ω1 and ω2, respectively) of the corresponding
Arnold tongue are approximately

ω1 = mω0 −
mω0AinΓm

2
, ω2 = mω0 +

mω0AinΓm

2
, (3)

where Ain is the amplitude of the externally injected small-
signal. Γm can be extracted by calculating

Γm =
(ω2 − ω1)

mω0Ain cos(θ)
, (4)

where θ is an as yet unknown phase which can be obtained
by applying

θ =
π − ∆θ

2
, (5)

where ∆θ is the phase difference (or swing range) between
the upper and lower locking region boundaries; thus, ∆θ =

θmax − θmin.
The DC component of the phase-sensitivity function Γ(t)

is defined by

Γ0 =
(ω − ω0)

Ainω0
, (6)

where ω is the response frequency of the oscillator when a
DC component is injected.

The final quantity we require is the phase constant φk,

φk = −
2π(tk − t1)

T/k
(7)

where t1 and tk are the times of a pair of zero-crossing
events when the injected small-signal is at the centre of
tongue k. t1 corresponds to “divide-by-1” synchronization
and tk refers to “divide-by-k.” For additional details con-
cerning the extraction procedure for φk, see [3].

4. Experimental Estimation Procedure

4.1. Experimental Circuit

In the experiment, we have studied the relaxation oscil-
lator described in [3]; this is shown in Fig. 2. All transis-

Figure 2: Relaxation oscillator (adapted from [3])

tors are BS170 NMOS devices. In this circuit, the cross-
coupled pair Q1 and Q2 produces negative resitance; Q3,
Q4 and Q5 provide the bias currents. The component val-
ues are shown in Table 1.

Parameter Value
Vcc 7.0 V
R 200 Ω

Rg 1 kΩ

Rs 10 Ω

Rp 1 kΩ

C 1 nF

Table 1: Component values.

The input and output nodes are nodes 3 and 2 in Fig. 2,
respectively.

In our experiment, an opamp-based Howland current
source is used to inject the external small-signal perturba-
tion; this is shown in Fig. 3. Terminal VIN− is grounded.
The input signal is applied between VIN+ and ground. The
current injected into node 3 in Fig. 2 is defined by:

IOUT =
VIN+

R
, (8)

where R = 100 kΩ in our example.
The experimental setup is shown in Fig. 4. The fre-

quency generator is Agilent model 33250A. The frequency
counter is Agilent model 53230A. In addition, an oscillo-
scope is connected to the output of the oscillator; the oscil-
loscope is Tektronix model TDS 3034B. The experiment
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Figure 3: Howland current source

Figure 4: Experimental setup.

is controlled by Labview software. The measured data is
analysed using Matlab.

4.2. Γ(t) Estimation Procedure

With the experimental setup described in Sec. 4 and the
parameter values in Tab. 1, the circuit oscillates with a free-
running frequency f0 = 711 kHz (ω0 = 2π f0).

Maffezzoni showed that the DC component and the first
three harmonic components are dominant. Therefore, in
our experiment, we determine the widths of the first three
Arnold tongues; these are shown in part in Fig. 5.

Figure 5: The red curves are measured by the boundary-
following algorithm based in Labview software [4] and the
horizontal curves are measured by devil’s staircase method

The middle curves in Fig. 5 correspond to an injected
signal amplitude of Ain = 20µA. We will use these cross-
sections through the Arnold tongues to extract the FS coef-
ficients of Γ(t).

4.2.1. Γ0

Firstly, by DC injection, we obtain the DC response ω =

2π × 712.5 kHz. Subsituting into Eq. (7), we obtain

Γ0 = 106 A−1. (9)

4.2.2. Γk for k > 0

We next extract Γk (for k = 1, 2, 3) in the Fourier series
(2). The lower and upper (ω1, ω2) limits in (5) can be easily
found from Fig. 5. The value of θ in the denominator can
be calculated using (6). In the experiment, it is measured
and recorded by the Agilent 53230A universal frequency
counter.

The basis of our method is to sweep the frequency
through the locking region, and to measure the standard
deviation of the phase (the term phase here represents the
phase-difference between the injected signal and the corre-
sponding output response), as shown in Fig. 6.

Figure 6: Phase standard deviation

When the standard deviation is close to zero, the oscilla-
tor is deemed to be in a locked region. Then, the phase is
extracted, as shown in Fig. 7.

Using this method, we obtain:

Γ1 = 1502 A−1, Γ2 = 2606 A−1, Γ3 = 3627 A−1. (10)

4.2.3. φk for k > 0

Finally, the last term to be calculated is the phase con-
stant φk. The way to measure it is explained in [3]. In-
jecting the centre frequency for each Arnold tongue, store
the waveforms of all injected signals using the oscillo-
scope. Then plot two of them with the same time-reference.
By measuring the time interval between two adjacent zero
crossings of the injected signal waveforms and using (8),
we obtain

φ1 = 0 rad, φ2 = −1.0028 rad, φ3 = −1.8802 rad. (11)
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Figure 7: Phase of locking region

4.3. Experimentally Estimated Γ(t)

We conclude by plotting the phase sensitivity function
Γ(t) using(2) and the coefficients determined above.

The experimentally estimated phase sensitivity function
is shown in Fig. 7.

Figure 8: Experimentally determined phase sensitivity
function Γ(t)

Compare this with the estimate shown in Fig. 9 that was
produced by Maffezzoni using the analytical model of the
circuit. While our curve is qualitatively similar to that pro-
duced by simulation, further work is required to explain
away the differences between the two curves.

While we used a Howland current source to inject the
synchronization signal, Maffezzoni used a voltage source
with a large series resistor. This could account for the scal-
ing difference between the curves. Futhermore, there are
clear discrepancies between the two circuits in terms of the
free-running frequency f0, indicating that the component
values used are different. Finally, Maffezzoni used five FS
coefficients while we calculated just four. We are carrying
out further research to reconcile the differences between the
two sets of results.

Figure 9: Simulated phase sensitivity function (reproduced
from [3]).

5. Conclusion

We have presented an experimental method for estimat-
ing the FS coefficients of the phase sensitivity function Γ(t)
of an oscillator. We have confirmed the viability of the
method in the case of a relaxation oscillator for which Maf-
fezzoni has produced simulated results [3].
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