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Abstract—We use rewiring of neural networks perform-
ing real-world cognitive tasks to study whether the particu-
lar wiring observed within cortical columns is able to boost
neural computation. Upon a vast survey of networks we
detect no traces of the proposed effect. It is on the meso-
scopic inter-columnar scale that the existence of columns -
largely irrespective of their inner organization - enhances
the speed of information transfer and minimizes the to-
tal wiring length required to bind the distributed columnar
computations towards spatio-temporally coherent results.

1. BIOLOGICAL DATA AND BRAIN MODEL

Towards the turn of the 19’th century, J. P. Müller, E. du
Bois-Reymond and H. von Helmholtz discovered that neu-
rons are electrically excitable and this predictably affects
the electrical state of connected neurons. Shortly after,
Golgi and Ramón y Cajal provided their Nobel-prize win-
ning description of neuronal and cortical architecture, re-
vealing in the case of the human neocortex striking colum-
nar structures divided into six layers. Ever since this dis-
covery it has remained a question to what extent neuronal
physics and the cortical architecture could account for the
exquisite properties of the human brain, at least within the
scope limited by Gödel’s theorem. We approach this prob-
lem by measuring on the inner-columnar scale the effect
that the columnar wiring has on real-world pattern recog-
nition tasks in a framework that permits to measure recog-
nition rates without compromising the columnar wiring by
the learning process. On the inter-columnar scale, i.e. on
the level where the columns interact, the effects on the
speed of information transport and computation are ana-
lyzed in a framework that offers analytical methods with
results valid for sufficiently general situations. Our strat-
egy is to start from networks in which details of cortical
architecture are implemented. Using appropriate rewiring,
we move away from the biological blueprint, measuring the
effects of the removal.

Biological data: Data collected by Roerig et al. [1] for
a similar context, evidence in their Log-Log-plot adaption
(see Fig. 1) a break between two decay laws at the scale
indicated in Fig. 1 by the dashed vertical lines. These lines
mark roughly the extension of a (physiological) cortical
column. Roerig et al. [1] also noted that ’A small frac-
tion of inputs originated more than onemm away’. These
observations suggest: A power law or an exponential law
of connectivity probability decays with distance across the

columnar scale (we chose an exponential decay, which al-
lows the direct comparison of our results to similar work
performed in Ref. [2]), a power-law decay for the interac-
tion among whole columns (i.e. on inter-columnar scales)
and a much slower decaying power law over very long dis-
tances to ensure that the connection probability does not
go to zero not too quickly. Motivated by an approximate
self-similarity over the microcolumn-column-hypercolumn
scales, we will assume that the exponent associated with
the slow decay will be close to the one estimated across the
columnar distance. Our results do, however, not critically
depend on the exactly values of the exponents, only on their
relative ordering is of relevance.
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Figure 1: Biological data: Logarithmic density of photostimu-
lation - evoked excitatory (a) and inhibitory (b) synaptic inputs
(concentric rings 50µm apart, from 19 pooled layer 2/3 neurons).
Adaptation from Ref. [1]. Vertical dashed lines mark the typical
extension of a (physiological) column. Tilted dashed lines: pro-
posed slowly-decaying power-law across large distances

Computation within columns: Despite one hundred
years of intense investigations a precise correspondence be-
tween functional and physiological columns has not been
obtained. Nonetheless, the wide-spread conception is that
cortical computation takes essentially place within a col-
umn. To test the effect of wiring structure on computa-
tion, we therefore will measure first to what extent inner-
columnar wiring structure contributes towards computa-
tion. We implemented two levels of cortex-inspired wiring
(cf. Fig. 2). Upon gradually eliminating architectural de-
tails by randomly rewiring the connections, we will mea-
sure the impacts that connectivity details have on cognition
and computation. Throughout all experiments, the abun-
dance of inhibitory neurons within the population of neu-
rons was kept at 20 percent. To compare with Ref. [3],
we will mainly discuss results obtained for networks on a
three-dimensional grid of 3× 3 × 15 = 135 neurons. We
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checked, however, that the obtained results also hold for
larger networks, and exhibited where this was not the case.
In the simple excitatory-inhibitory EI network model, the

4 4d

0.1

0.4

pcon

EE EI IE II

|w|

4 4d

0.3

pcon

EE EI IE II

|w|

- -

I) b)a)

input

lay. 4 exc.

inh.

exc.

inh.

5 exc.

inh.

input

exc.

inh.

randomizedLEI-network

presyn. neurons presyn. neurons

p
o

st
sy

n
. n

e
u

ro
n

s

p
o

st
sy

n
. n

e
u

ro
n

s

av. syn. stren.

0

0.5

lay.

lay. 2/3

2/3 e.4e. i. i. 5/6 exc. inh. exc. inh.

a) b)II)

Figure 2:I) a) EI-model, b) EI-control network (uniform synap-
tic weightsw, λ = 2). pcon: probability of a synaptic connection
among neurons of distanced for C-values as in the text,w: synap-
tic strength of the connections. II) a) LEI-model, b) LEI-control
network. Input strength to populations is color-coded.

biological architecture is reduced to an excitatory and an
inhibitory neuronal population and the connections within
and between them. To vary the network structure within the
EI model frame, we use a parameterλ ruling the probabil-
ity for a connection from neuronj to neuroni according to
pcon(i, j) = C(i, j) · exp

(

−d2
i, j/λ

2
)

, wheredi, j = |x̂i − x̂ j| is
the Euclidean distance between thei’th and the j’th neu-
rons’ positions in the neural network (see end of para-
graph). Asλ controls both the number and the typical
length of the connections, varying from unconnectedness
(λ = 0) over local next-neighbor connectivity (λ = 1) to
global connectivity (λ = ∞), this parameter we will use
to scan different network structures.C(i, j) establishes the
connectivity among excitatory (=’E’) and inhibitory (=’I’)
neurons, established by means of one pooled synapse. Our
choiceC(E, E) = 0.3, C(E, I) = 0.4, C(I, E) = 0.2 and
C(I, I) = 0.1 reflects the typical biological connectivity.
Synaptic weights are drawn from a uniform distribution
over [0, 1], multiplied by the weight factorsw(E, E) = 30,
w(E, I) = −19,w(I, E) = 60 andw(I, I) = −19. The model
is compared to a control network whereC is uniformly set
to 0.3, where the synaptic weights are again drawn from
a uniform distribution over [0, 1], endowed with a uniform
weight factor scaled to match the total weight of the non-
control networks and a sign for distinguishing between in-
hibition and excitation.λ enables us to assess a huge range
of neural network architectures. One important feature is
that in contrast to classical reservoir computing, we will
also vary the fractionI of input-receiving reservoir neu-
rons. In the more detailed LEI network model, also the bio-
logical layering structure is implemented. The LEI network
is composed from three layers (2/3, 4 and 5/6), each of
them containing an excitatory and an inhibitory population.

The network is endowed with recurrent connections within
the individual layers following the connection probabilities
and strengths of Ref. [2]. As in the biological example in-
put mostly feeds into layer 4 (input stream 1 in [2]). Layer
2/3 is the hidden layer, the output neurons are confined to
layer 5/6. A family of control networks parametrized by
p ∈ [0, 1] is obtained by replacing at each synapse with
probabilityp the pre- and postsynaptic neurons by neurons
chosen from the pooled neuronal ensembles of the same
kind (excitatory or inhibitory). This rewiring procedure re-
tains the overall connectivity and weight distribution be-
tween the excitatory and inhibitory populations, but gradu-
ally removes the three-layered structure.

The measurement of the computational effect of inner-
columnar wiring structure is done within the framework
of a reservoir or liquid state computing neural network
(’LSN’). While not in all aspects of top-class efficiency
among the possible network types, LSN has successfully
been used in robot motion planning. In these networks,
learning is confined to the network’s periphery. This al-
lows us to assess the pure effect of the inner-columnar
wiring structure on computation, without being compro-
mised by the learning process. LSN associatesk pairs
{u(t)i , y(t)i}i∈{1,..,k} of input / output sequences of individ-
ual sequence lengthTi (so thatt ∈ {1, .., Ti}). The dimen-
sionality of the input vectors is denoted byNu, the dimen-
sionality of the output vectors byNy. Upon stimulation
by the input sequenceu(t)i, the reservoir ofNx neurons
generates a state vectorx(t)i of the same dimension. Let
T =

∑

Ti denote the total time spanned by the input pat-
terns, and letX be theNx × T -matrix of states. LetY
denote theNy × T -matrix of the associated patterns. The
desired relationWoutx(t)i ≃ yd(t)i leads directly to the
least-squares optimized read-out matrixWout ≃ YX+, if
X+ is the (Moore-Penrose) pseudo-inverse ofX. During
the learning phase, the input and the desired output signal
are fed into the reservoir. Care is taken that the scaled in-
put signal optimally stimulates the respective target neuron
models (see below). After a transient phase, the optimized
output matrixWout is calculated. This step corresponds to
the learning process in classical neural networks. Network
realizations are captured in the connection weight matrix
W, whereas ’learning’ in the traditional sense is confined
to the read-out matrixWout. Excitatory connections are
reflected by positive synaptic weightss, inhibitory connec-
tions by negative weights and absence of connections by
zero weights. For all networks, the average neuronal activ-
ity is determined by the overall scaling of the inputs and
the synaptic weights and by the wiring matrixW. To en-
sure that networks of a similar level of neuronal activity
are compared, the chosen matricesW were scaled to obtain
a common largest eigenvalue (1 for EI networks, 0.2 for
LEI networks). MatrixWin was chosen by drawing from
across [−0.2, 0.2] uniformly distributed random numbers
(for Izhikevich neurons scaling by 30 was needed to arrive
at the standard parameter scale). The input and synaptic

- 853 -



efficiencies were scaled so that neurons could be excited
by their presynaptic partners without reliance on input, but
that the firing rates in response to excitation from both in-
put and presynaptic spikes were also sufficiently distant to
saturation (fsat = 1/τ). By this we ensured that during
all the parameter sweeps, the network was confined to the
same dynamic range. In the original LSN, for every in-
put vector an output vector is generated, so that the read-
out is memoryless (′ml′). For classification tasks it may be
advantageous to have a memory span of a size compara-
ble to the stimulus length. Otherwise, LSN will confuse
stimuli containing similar parts (e.g. phonemes in speech
recognition). This is why we also implemented a more ad-
vanced read-out method, where for every neuron and stim-
ulus, an integral stimulus-averaged firing rate provides the
read-out vector (integration readout (′int′)). To arrive at
statements that are largely independent of the network el-
ements, we tested rather distinct models of the neuronal
membrane voltage dynamics of which we report exemplar-
ily the results from leaky integrate-and-fire and from fast
simple Izhikevich spiking neuron dynamics.

Computation by interacting columns: When zoom-
ing out from the columnar dimension to the inter-columnar
scale, we have to wrap up the columnar computation and
relate it to the computations performed by other columns.
Rulkov [4] has demonstrated that any desired neuronal fir-
ing behavior representing columnar response can be ex-
pressed by a suitably chosen discrete map. The natural
model then to use is a coupled map lattice [5] of chaotic
maps, to have the response flexibility required for commu-
nication. In our modeling of bio-inspired connectivity, the
probability that two lattice sitesi, j of distancedi, j are con-
nected ispi, j = θ ·di, j

−α+ (1− θ) ·di, j
−β, which specifies the

connectivity matrix, see Fig. 4a. By choosingα, β andθ,
a range of network architectures similar to those explored
in the LSN paradigm can be accessed. Givenθ = 1, the
system can be changed from a globally coupled network
(α = 0) into a nearest-neighbor coupled network (α→ ∞).
For 0< θ < 1,β = 0,α→ ∞, the network is coupled to the
nearest neighbor with probability 1 and to all other nodes
with probability (1− θ) up to the cutoff M. As a result we
obtain a combined nearest neighbor- and random-coupled
network. For all intermediate values ofα andβ, the net-
work is fractally coupled. The cutoff valueM determines,
together with the underlying topology, the average number
of connected nodesk. The interaction of the local chaotic
site mapsf is modeled by diffusive coupling.

The computation performed at this scale will be char-
acterized by the network’s ability to quickly propagate in-
coming information and to generate among the affected
cells a coherent state, expressing that ’computation’ has
emerged [6]. Both abilities depend crucially on the number
of connectionsk that impinge on a cell. Spatio-temporal in-
formation propagation is the maximal velocity of the prop-
agation of perturbations through the network. As a basic
approximation, this propagation is the result of two inde-

pendent contributions: The chaotic instability of the map
leads to an average exponential growth of the initial in-
finitesimal perturbationd0 applied at site 0, whereas the
diffusive coupling results in a Gaussian spreading. The
combined perturbative effects at sitei are then expressed
by the equation [7]|δxi(t)| ≈ d0/

√
4πDt · exp (̃λt − i2

4Dt ),
whereD denotes the diffusion coefficient andλ̃ is the Lya-
punov exponent of the site map. The velocityv of the trav-
eling wave front is determined at the borderline of damped
and undamped perturbations, leading tov = 2

√
λ̃ ·
√

D.
For identical local site maps the task reduces to estimate
D from the network topology alone, e.g. via the Markov
chain mean transition time. The coherent computational
state is expressed by the cells’ ability to synchronize in
a generalized sense, which requires a minimal numberk
of connections to impinge on a given site. Full dynamical
synchronization of the chaotic sites continues to exist if the
condition [8] | eλ̃ − εµk |< 1 (whereµk are the nonzero
Eigenvalues of the graph Laplacian) is maintained. This
simple criterion may be overly severe, but can serve as a
guideline. Different network architectures should therefore
be compared under the constraint of an equal average num-
ber of connectionsk. Biologically relevant indicators of
network efficiency will then be the speed of information
transfer through the network and the total wiring length re-
quired for synchronized columns. Finer network features
can be implemented via the connectivity matrix.

2. RESULTS

For the computation within columns, two popular time
series classification tasks serve as real-world benchmarks,
in contrast with the more abstract computations consid-
ered in Ref. [2], Single Arabic Digit speech recognition
(13 Mel Frequency Cepstral Coefficients for 10 classes of
digits spoken by 88 subjects) and Australian Sign Lan-
guage (’Auslan’) recognition (22 parameters for 95 signs,
recorded from a native signer using digital gloves and posi-
tion tracker equipments). Two general observations emerge
from Fig. 3. Whereas the particular neuron models (and the
underlying circuit parameters) are of secondary influence
(blue vs. red curves), the integration readout (right panels)
has a clear advantage over instantaneous readout (left pan-
els). The results for the EI-network demonstrate that the
connectivity expressed byλ does not enhance the compu-
tational power of the network. Having no recurrent con-
nections among the reservoir neurons does not hamper the
recognition rate, suggesting that extremely little computa-
tion is owed to synaptic interaction. Low recognition rates
from memoryless readout could be from applying the in-
put signal to all neurons, thus constantly overwriting mem-
ory that otherwise would be retained in ’hidden’ neurons.
Therefore we examined in Fig. 3’s second row the role of
the hidden neurons, by measuringR for networks having
a reduced fractionI of input signal receiving neurons. If
hidden neurons were beneficial, we should again expect a
maximum ofR for some optimal value ofI. In the Arabic

- 854 -



I

0 1
0.6

0.8

0 1
0.02

0.05

0 1
0.1

b)

a)

0.4

R

R

p

R

p p

II)

a)

b)

a)

b)

0

0.5

R

0 10λ 0 10λ
0.5

1

R

0 1 I

R
a)

R

ml

int

int

b)

0 1
0.35

0.45

p

R

ml

I)

0

0.5

0

0

1

1

a)

b)

ml

ml int

int

a)

b)

Figure 3: Recognition rateR for a) Arabic Digit, b) Auslan
recognition, using leaky integrate and fire (blue curves), or Izhike-
vich (red curves) neurons, averages over 20 experiments. Left col-
umn: memoryless (’ml’), right column: integration (’int’)read-
out. Networks (cf. Fig. 2): I) EI network, dependence upon
rewiring via parameterλ (control networks: dashed curves), and
on the ratioI of input receiving neurons, at local connectivity
(i.e.,λ = 2). Ocher: Izhikevich neurons withλ = 0 (no connec-
tions). II) LEI networks, dependence on the rewiring probability
p. p = 0: layered,p = 1: homogeneous control network.

Digit task with memoryless readout we do not observe a de-
pendence on the number of actually used neurons (i.e. be-
yondI = 0.1, where we have on average 13.5 input receiv-
ing neurons, at an input dimensionality of 13). The simi-
larity of the results obtained forλ = 0 and forλ = 2 sug-
gests that the nonlinear interaction among the input receiv-
ing neurons does not significantly enhance performance. In
the Auslan task we see a monotonous dependence ofR on I,
because for most values ofI the number of input receiving
neurons is smaller than the input dimensionality (i.e., we
haveI · 135< 95). The EI network with biology-motivated
wiring structure thus does not perform significantly better
than the control network. The results obtained for the LEI
networks reflecting to more details the columnar layering
structures (Fig. 3 II) corroborate the observations made for
the simpler model: A significant dependence ofR on the
rewiring probabilityp is not observed. These observations
are compatible with earlier findings for LSN.

Computation by interacting columns is characterized by
the time and the material (i.e., the network’s total wiring
length) required to obtain a spatio-temporally coherent ef-
fect at some distant information-processing network site.
We measured the speed of information transport through
the network for doubly fractal, single fractal, random, and
nearest-neighbor, coupling topologies, and found that the
doubly fractal architecture suggested by the data of Roerig
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Figure 4:a) Main network connectivities compared (p: connec-
tion probabilities, d: distance, M: cutoff, see text). Below: exam-
ples of ’fractal’ wirings. b) ’SIT’ as a function of average num-
ber of connectionsk. From top: doubly fractal (θ = 0.2, α =
0.5, β = 2.0), fractal (θ = 1, α = 0.7), random, next-neighbor
topology. Networks sizes:N = 4096. Averages over 100 exper-
iments. Lower panel: Typical number of connectionsk required
for synchronization and (histogram height) relative totalwiring
length TWL.N = 512, 10 realizations.

et al. consistently enhances speed of information trans-
fer if compared to the alternative networks (Fig. 4b), up-
per panel). In this figure, we plot the speed of information
transferv =:SIT in arbitrary units. Speed enhancement per-
sists across a wide selection of pairs of exponents as long
as the qualitative size of the exponents is preserved. Our
numerical experiments show that under the condition of
synchronization, the doubly fractal architecture jointlyop-
timizes total wiring length TWL and speed (Fig. 4b), lower
panel).
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