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Abstract—By adding some kinds of frustrations to cou-
pled oscillatory networks, interesting synchronization phe-
nomena can be obtained. In this study, we propose ampli-
tude analysis by using whole power consumption in cou-
pled oscillatory networks with frustrations.

1. Introduction

Modeling of natural phenomena becomes very important
research topic to predict extreme weather consistent with
global warming, recently. Coupled oscillatory systems are
good models to express essential role of high-dimensional
nonlinear phenomena occurring in the field of natural sci-
ences. Therefore, studies of synchronization phenomena
have been extensively reported in various areas such as
physical [1],[2], biological [3],[4] and electrical [5] sys-
tems.

On the other hand, there are several types of polygonal
network structures (e.g. Honeycomb structure and crystal
structure) in the natural science. Generally, for the studies
of large-scale network using coupled oscillators, a ring, a
ladder and a two dimensional array structure are often in-
vestigated. However, there are not many discussions about
coupled polygonal oscillatory networks by using electrical
oscillators.

Furthermore, we have been interested in coupled oscil-
latory networks which has some sort of frustrations of net-
work structure [6],[7]. Because, we consider that frustra-
tion have possibility to produce the other types of synchro-
nization such as more complex phenomena and different
synchronization from the original system.

In our previous study, synchronization phenomena in
coupled polygonal oscillatory networks with frustration
was investigated. In this system, odd number of van der
Pol oscillators are connected to every corner of polygonal
network and frustration is occurred by the shared branch.
We have confirmed that the phase difference between the
shared oscillators was shifted, then other oscillators syn-
chronized to compensate this phase shift. In order to solve
the phase difference in the circuit system, we focused on
the power consumption of the coupling resistors in the
whole system and proposed the theoretical analysis method

by finding the minimum value of the power consumption
function. By using computer simulations and theoretical
analysis, we confirmed that coupled oscillators tended to
synchronize to minimize the power consumption of the
whole system [8]. In the proposed theoretical analysis, we
use the equal amplitude for all coupled oscillators. How-
ever, the accurate amplitude of coupled oscillators has dif-
ferent values by the effect of frustrations.

In this study, we propose amplitude analysis by using the
power consumptions of the coupling resistors and the non-
linear resistors in coupled oscillatory networks with frus-
trations.

2. Three Coupled Oscillators as a Ring Topology

2.1. Circuit Model and Equations

The circuit model of three coupled van der Pol oscillator
as ring topology is shown in Fig. 1.
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Figure 1: Three coupled van der Pol oscillators as a ring
topology.

In the computer simulations, we assume that the vk − iRk

characteristics of the nonlinear resistor in each oscillator is
given by the following third order polynomial equation

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (1)

(k = 1, 2, 3).
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The normalized circuit equations governing the circuit in
Fig. 1 are expressed as
[First oscillator]
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)
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[Third oscillator]
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(k = 1, 2, 3).

In this equations, γ is the coupling strength and ε denotes
the nonlinearity of the oscillators. For the computer simula-
tions, we calculate Eqs. (2)-(4) using a fourth-order Runge-
Kutta method with the step size h = 0.005. The parameters
of this circuit model are fixed as ε = 0.1, η = 0.001. In
this circuit system, we observe three-phase synchronization
(phase shift: 120◦).

2.2. Amplitude Analysis by using Power

We investigate the amplitude of three coupled oscillators
when the coupling strength γ is changed. The simulation
result is shown in Fig. 2.

We can see that the amplitude is decreased with the cou-
pling strength. How do the amplitude of oscillators deter-
mine? In order to solve this question, first, we consider the
power of the nonlinear resistor of one van der Pol oscillator
without coupling.
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Figure 2: Amplitude of oscillator by changing γ.

By using the following variable for the current of the
nonlinear resistor,

iRk =

√
g1

3g3

√
C
L

yRk.

And we assume the voltage of the capacitor as the follow-
ing equation:

x = Am sin τ. (5)

The power of the nonlinear resistor in van der Pol oscil-
lator is described as Eq. (6).

PNR =
1

2π

∫ 2π

0
{−εA2

m sin2 τ +
1
3
εA4

m sin4 τ}2dτ (6)

By solving Eq. (6),

PNR = −
1
2
εA2

m +
1
8
εA4

m. (7)

Figure 3 shows the graph of Eq. (7) for one van der Pol
oscillator. From this figure, we confirm that the amplitude
shows ±2 when the power is zero. We can see that the am-
plitude is determined by the balance of the total power (the
power of the nonlinear resistors and the coupling resistors)
in the circuit system.
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Figure 3: Power of nonlinear resistor.

Next, we apply this approach to three coupled van der
Pol oscillators as ring topology. The power of the nonlinear
resistor is calculated by using above method (Eq. (7)). In
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order to calculate the power of the coupling resistors, we
define the current of the inductor is described as follows.

ya =
Am

2
sin(τ +

π

2
)

yb =
Am

2
sin(τ +

5π
6

)
(8)

The power of the coupling resistor is expressed by
Eq. (8).

PCR =
γ

2π

∫ 2π

0
{Am

2
sin2(τ +

π

2
+

Am

2
sin2(τ +

5π
6
}dτ (9)

By solving Eq. (8),

PCR = −
1
8
γA2

m. (10)

The total power is obtained by calculating the following
equation.

PALL = 3PNR + 3PCR. (11)

Figure 4 shows the graph of Eq. (10) when the coupling
strength is fixed with γ=0.1. In this case, the amplitude
of the oscillators denotes 1.73 when the total power shows
zero. This result matches very well with the computer sim-
ulation result.
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Figure 4: Total power of three coupled van der Pol oscilla-
tors as ring topology.
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Figure 5: Total power by changing γ.

Next, we show the graph of total power when the cou-
pling strength γ is changed as shown in Fig. 5. By in-
creasing the value of γ, the amplitude of the oscillators de-
creases. Figure 6 shows the change of the amplitude with

the coupling strength obtained from the theoretical analy-
sis and the computer simulation. From this figure, we can
see that the both methods match well when the coupling
strength is small.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

A
m

pl
itu

de

γ

Simulation
Theory

Figure 6: Amplitude of oscillator by changing γ.

3. Two Coupled Polygonal Networks

In this section, we apply the theoretical analysis to find
the amplitude by using total power for two coupled polyg-
onal oscillatory networks. The conceptual circuit model of
5-5 coupled networks is shown in Fig. 7.

3rd osc.
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2nd osc.
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Figure 7: Two coupled odd-number-node polygonal oscil-
latory networks (5-5 coupled networks).

Table I summarizes the obtained amplitude by using
computer simulation when the coupling strength is fixed
with γ=0.1. We confirm that the amplitude of the shared
oscillators is smaller value than the other combination os-
cillators. Namely, we define two amplitudes Am and Bm for
the two coupled polygonal networks.

Table 1: Amplitude of 5-5 coupled networks (computer
simulation)

Shared (1st-2nd) osc. Other combi.
1.933 1.986

The power of the nonlinear resistor is obtained by
Eqs. (11), (12).

PNRa = −
1
2
εA2

m +
1
8
εA4

m

PNRb = −
1
2
εB2

m +
1
8
εB4

m

(12)
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The power of the coupling resistor is obtained by
Eqs. (13)-(15).

PCRa = −
1
18
γA2

m{sin(4π + θ) − sin θ − π cos θ}

PCRab = −
1
18
γAmBm{sin(4π + θ) − sin θ − π cos θ}

PCRb = −
1
18
γB2

m{sin(4π + θ) − sin θ − π cos θ}
(13)

The total power is obtained by calculating the following
equation.

PALL = 2PNRa + 6PNRa + PCRa + 4PCRab + 4PCRb. (14)

Figures 8 and 9 show the graph of the total power for
5-5 coupled networks. In Fig. 8, the amplitude Bm is set
to 1.98 which is obtained from the simulations. While, in
Fig. 9, the amplitude Am is set to 1.90 similary. From these
figures, we obtain the amplitudes Am, Bm when the graph
of total power shows zero.

Finally, the amplitude obtained from theoretical analysis
is summarized in Table II. We can see that these amplitudes
are very similar to the simulation results (see Table I).
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Figure 8: Total power of 5-5 coupled network (Am).
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Figure 9: Total power of 5-5 coupled network (Bm).

4. Conclusions

In this study, we have proposed amplitude analysis by
using whole power consumption in coupled oscillatory net-
works with frustrations. By using computer simulations,

Table 2: Amplitude of 5-5 coupled networks (theoretical
result)

Shared (1st-2nd) osc. Other combi.
1.95 1.99

we have confirmed that the amplitude of coupled oscilla-
tors is decided by the balance of whole power consumption
in the circuit system. Furthermore, we have proposed the
theoretical analysis to solve the amplitude of oscillators by
finding zero value of the total power functions.

For the future work, we develop a efficiently method to
find the minimum value of the power function for the large
scale complex networks with many variables. Investiga-
tion of synchronization phenomena in coupled polygonal
oscillatory systems with strong nonlinearity or in coupled
polygonal chaotic oscillators is also our future work.
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