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Abstract—In this study, we discuss appearance of an al-
most super stable periodic orbit (ASSPO) in an electric im-
pact oscillator. First, we show the circuit model and then
we explain its dynamics. Next, we derive the Poincaré map
and the bifurcation diagram. Finally, we mathematically
show appearance of ASSPO through the stability analysis.
We believe that appearance of ASSPO is an interesting phe-
nomenon itself because it is a new phenomenon and may
also be observed in the other impact oscillators.

1. Introduction

The switched dynamical system (SDS) has the inter-
rupted characteristics. We know that there are various kinds
of the SDSs in the engineering field. The interrupted or
impact systems are the typical example of them. The in-
terrupted system has two or more subsystems that can be
interfaced by the switching devices. On the other hand, the
impact systems have a discontinuity in the orbit, i.e., the or-
bit instantly jumps one to the other via the impact. It is im-
portant to study the qualitative property of these SDSs not
only for the fundamental research but also for the practical
application. The bifurcation analysis is one of an effective
approach for understanding the qualitative property of the
SDSs. There are many papers which have studied the bifur-
cation phenomena in the SDS, e.g., Refs [1, 2] have studied
the switching regulators, and Refs [3, 4, 5] have studied the
mechanical impact systems, and so on.

The bouncing ball model is well-known impact system
in the mechanical engineering field [6]. The dynamic be-
havior of it is very simple: a ball bounds on a periodically
vibrating table. In spite of that, the bouncing ball model
simulates various kinds of the mechanical impact oscilla-
tors. For example, the dynamic behavior of the overhead-
wire pantograph system of the electric rail way is similar to
that of the bouncing ball model [7]. Thus, it is important to
study the bouncing ball model, because it is available for
understanding the qualitative property of this class of the
impact oscillators. The dynamic behavior of it has been
intensively studied in the previous works [8, 9, 10]. More-
over, an electrical bouncing ball model has been proposed

in Ref. [11]. The electrical model has an advantage in
the laboratory experiment and the dynamic behavior of the
model is similar to the mechanical bouncing ball closely.
Thus, it is also valuable to analyze the electrical bouncing
ball model in order to essentially understanding the char-
acteristics of the impact systems. There are some papers
which have investigated the nonlinear phenomena in the
model. But, all of these papers studied the circuit’s dynam-
ics around the period-doubling bifurcation [12, 13]. We
know that the electrical bouncing ball has rich interesting
nonlinear dynamics other than the period-doubling bifurca-
tion.

In this study, we introduce appearance of the almost su-
per stable periodic orbit (ASSPO) in an electrical bouncing
ball. It is an interesting phenomenon itself because there is
no study which has investigated the ASSPO in the impact
oscillator. First, we show the circuit model [11], and then
we explain behavior of the waveform. Next, we derive the
Poincaré map and the bifurcation diagram. Using the bifur-
cation diagram, we show the typical examples of the orbit.
Finally, we analyze the stability of the orbit and show that
appearance of the ASSPO.

2. An electric impact oscillator

Figure 1 shows the circuit model [11]. Basically, the
circuit consists of the operational amplifiers: IC1 and IC2
are the integrators, and IC3 is the unity gain adder. The
capacitance voltages v1, v2, and an external input voltage
S (t) = vt cosΩt correspond to the ball’s position, ball’s ve-
locity, and table’s position in the mechanical bouncing ball
model. In this study, we use the inverting amplifier for v1.
The circuit parameters are follows:

E1 = E2 = 1.5[V], R1 = 1.0[MΩ], R2 = R3 = 10[kΩ],

R f = 2.0[MΩ], C1 = 33.0[nF], C2 = C f = 0.1[µF].
(1)
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The circuit equation is given by
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id(v3) and v3 are defined as follows:
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, v3 > 0

0, v3 ≤ 0

, (3)

where v3 is

v3 = −v2 − S (t). (4)

We use the following values:

x = v1, y = v2, z = v3, a = vt, ω = ΩR2C2,

τ =
t

R2C2
, α =

R2C2

R f C1
, β =

C f

C1
, γ =

R2C2

R1C1
E.

(5)

Thus, Eq. (2) is rewritten as follows:

u̇ = A1u + B1, Diode: ON
u̇ = A2u + B2, Diode: OFF , (6)

where u = (x, y)>,> denotes transpose. Ai and Bi (i = 1, 2)
are defined as follows:

A1 =

[

0 −1
0 0

]

, A2 =

[

0 −1
α −β

]

, (7)

B1 =

[

0
0

]

, B2 =

[

0
αa cos(ωτ) − βaω sin(ωτ) + γ

]

.

(8)
The external input is given by

S (τ) = a cosωτ. (9)
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Figure 1: Circuit model.

The switching condition z is defined as

z = −x − S (τ), (10)

where the diode is opened if z > 0, otherwise the diode is
closed. The parameters α, β and γ are fixed as α = 15.0,
β = 3.0 and γ = 0.05 in the following analysis.

Figure 2 shows a typical example of the waveforms in
the circuit. The red-colored waveform x(τ) denotes the
displacement of the ball, the green-colored waveform y(τ)
denotes the velocity of the ball, and yellow-colored wave-
form S (τ) denotes the displacement of the table, respec-
tively. When x(τ) hits the S (τ), i.e., x(τ) ≤ S (τ), the
diode changes from closed to opened. After that, the diode
changes from opened to closed again if x(τ) > S (τ) is sat-
isfied.

3. Analytical results

Figure 3 shows an example of the one-parameter bifur-
cation diagram. The bifurcation parameter ω is increased
from ω = 0.4 to ω = 0.7 and we show a part of the one-
parameter bifurcation diagram. The y-axis xk denotes a
sampled data: we sampled the waveform x(τ) at every pe-
riod of T (see the blue points in Fig. 2).

The circuit has rich interesting phenomena, but we only
focus on the period-3 orbit in the following analysis. Fig-
ure 4 shows the period-3 orbits. It is clear from Fig. 4
that these period-3 orbits are different types of the period-
3 orbit, because the mapping points are not same (see the
blue-colored mapping points). However, we find that a part
of the mapping point is certainly on (x, y) = (−0.4, 0.0)
(see the mapping point in red-colored area). In this sit-
uation, the value of the waveform x(kT ) is very close to
that of S (kT ), i.e., the waveform x(τ) is almost slipping on
the waveform S (τ) around τ = kT . Thus, we can under-
stand that why these period-3 orbits have a mapping point
on (x, y) = (−0.4, 0.0); because x(kT ) = S (kT ) = −0.4 and
y(kT ) = dS (τ)

dτ

∣

∣

∣

τ=kT = 0.0.
At the next stage, we mathematically investigate the

mechanism of the period-3 orbit corresponding to (a) in
Fig. 4 as an example. Generally, we have to calculate the

kT (k+1)T (k+2)T (k+3)T (k+4)T

τ

τ

x(
τ)

,S
(τ

)
x(

τ)

Figure 2: Example of the waveforms.
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Figure 3: An example of the one-parameter bifurcation di-
agram.

characteristic multiplier of the orbit for understanding the
characteristics of the above period-3 orbit. Here, we use the
method reported in [14] for the stability analysis. Figure 5
shows an example of the enlarged waveform of the period-
3 orbit corresponding to Fig. 4 (a). Based on the figure, we
derive the characteristic multipliers of the period-3 orbit.
The Jacobian matrix M is defined as follows:

M = M1 · M2 · M3, (11)

where, M1, M2, and M3 are given by

M1 = eA1τ9 ·Soff(2T +τ8) ·eA2τ8 Son(2T +τ7) ·eA2τ7 , (12)

M2= ·eA1τ6 ·Soff(2T − τ6) · eA2τ5 ·Son(T + τ4) · eA1τ4 , (13)

M3 = eA1τ3 · Soff(τ1 + τ2) · eA2τ2 · Son(τ1) · eA1τ1 . (14)

A1 and A2 denote the subsystem matrix (see Eq. (7)).
Times τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, and τ9 are drown in Fig.
5. The state transition matrix Son(τ) and Soff(τ) are defined
as follows:

Son(τ)=





















1 0
αx(τ)−βy(τ)+αa cos(ωτ)−βaω sin(ωτ)

y(τ) + aω sin(ωτ)
1





















,

(15)

Soff(τ)=





















1 0
−αx(τ)+βy(τ)−αa cos(ωτ)+βaω sin(ωτ)

y(τ) + aω sin(ωτ)
1





















.

(16)
The characteristic multipliers µ is given by solving the fol-
lowing equation:

det
[

M − µI
]

= 0, (17)

where I denotes the unit matrix. Table 1 shows the charac-
teristic multipliers µ of the period-3 orbit. The table implies
that there is the almost super stable period-3 orbit (ASSPO-
3), because the characteristic multipliers satisfies µ ≈ 0.0.
We consider that the ASSPO appears when the waveform
is slipping on the sinusoidal wave.
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(a) Corresponds to a parameter (a) in Fig. 3
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Figure 4: Typical examples of the ASSPO.

Table 1: Characteristic multipliers µ1 and µ2 of the period-3
orbit

ω µ1, µ2 Remark
0.557633 -0.000000, 0.000022 ASSPO-3
0.557570 -0.000000, 0.000022 ASSPO-3
0.557507 -0.000000, 0.000023 ASSPO-3

4. Conclusion

In this study, we have confirmed existence of the AS-
SPO in an electric impact oscillator. First, we showed the
circuit model and then we explained behavior of the wave-
form. Next, we derived the Poincaré map and the bifur-
cation diagram. Based on the Poincaré map, we visually
explained existence of the ASSPO. Finally, we calculated
the characteristic multipliers of a ASSPO-3. Appearance
of the ASSPO is an interesting phenomenon itself because
no paper report such kind of phenomenon in the impact
oscillator. We consider that the ASSPO appears when the
waveform is slipping on the sinusoidal wave. We know that
the slipping phenomenon is also observed in the other im-
pact oscillators, i.e., the overhead-wire pantograph system
of the electric rail way. In addition, the circuit dynamics
is similar to the overhead-wire pantograph system. There-
fore, we consider that the ASSPO will also appear in the

- 834 -



1 2 3 4 5 6

7

9

0 T 2T 3T

8

Figure 5: Conceptual diagram for the stability analysis.

overhead-wire pantograph system. We believe that ASSPO
has a key to developing the nonlinear theory of the impact
oscillators because ASSPO is a new phenomenon and will
be observed not only in the electrical bouncing ball model
but also in the other impact systems. In future, we will
study the bifurcation phenomena around the ASSPO.
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