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Abstract—This paper proposes a simple method for an-
alyzing the border-collision bifurcation point in a piecewise
linear interrupted system. First, we show the system dy-
namics, and then we derive the Poincaré map. Next, we
explain the method for calculating the border-collision bi-
furcation point based on the Poincaré map approach. Fi-
nally, we apply the method to the current mode controlled
buck-boost converter. The analysis result will show the va-
lidity of the method.

1. Introduction

The piecewise smooth systems (PWS) have a interrupted
characteristic due to the complex switching actions. There
are many papers that have studied the bifurcation phe-
nomena in the PWS. We know that it is important to de-
rive the bifurcation sets for understanding the qualitative
property of the PWS. The calculation method for the lo-
cal bifurcations, such as the period-doubling bifurcation
and Neimark-Sacker bifurcation, have been studied. On
the other hand, a new non-local bifurcation phenomenon,
called the border-collision bifurcation, has been discovered
in the PWS [1]. Many papers have studied mechanism of
the border-collision bifurcation [2, 3]. In addition, some
papers have proposed the calculation method of the border-
collision bifurcation point based on the Poincaré map ap-
proach [4].

The sampled data model of the interrupted electric cir-
cuit, whose switch is dependent on the state and a periodic
interval, often constructs the PWS. It means that the border-
collision bifurcation can occur in the interrupted electric
circuit, and indeed Refs. [5,6] have reported appearance of
the border-collision bifurcation. Of course there is an al-
gorithm for calculating the bifurcation point of the border-
collision [7]. In theory, we can calculate the bifurcation
point by using above algorithm even if the system has non-
linear characteristics and is high-dimensional. But, the al-
gorithm [7] is complicated because it needs to analytically
derive the composite Poincaré map and its derivative. For

this reason, it is valuable to construct the algorithm with no
above complicated computation process.

In this paper, we aim to construct a simple algorithm
for calculating the bifurcation point of the border-collision
with the help of the mathematical tool MAPLE; the MAPLE
will help to derive the composite Poincaré map and its
derivative even if the system is high-dimensional [8]. First,
we show the algorithm based on the Poincaré map ap-
proach. Next, we apply the method to the current mode
controlled buck-boost converter. It will be possible to cal-
culate the bifurcation point of the high-dimensional system
by using the proposed algorithm. But, we apply the algo-
rithm for the two-dimensional buck-boost converter as the
first step to confirm the validity of the algorithm. Finally,
we show that the algorithm can calculate the bifurcation
point of the border-collision.

2. Bifurcation analysis

2.1. System description

We consider the following differential equations:


























dx
dt
= fa (x, y, λa, λc)

dy
dt
= ga (x, y, λa, λc)

, System-a, (1)



























dx
dt
= fb (x, y, λb, λc)

dy
dt
= gb (x, y, λb, λc)

, System-b, (2)

where λa, λb ∈ Rr and λc ∈ Rs are the system parameters.
Let the exact solutions of Eqs. (1) and (2) be:















x (t) = ϕa (t; x, y, λa, λc)

y (t) = φa (t; x, y, λa, λc)
, System-a, (3)















x (t) = ϕb (t; x, y, λb, λc)

y (t) = φb (t; x, y, λb, λc)
, System-b. (4)
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A local section Π in the state space is described as follows:

Π =

{

x ∈ R2 | q (y) = 0, q : R2 → R
}

. (5)

Note that the local section Π is a scalar function whose is
dependent on the state variable y.

Figure 1 shows a conceptual diagram for understanding
behavior of the waveforms. Let the initial waveform at t =
kT be xk = x (kT ) = (xk, yk)> with System-a. We assume
that there are two types of the waveform behaviors during
a time interval T . The one keeps System-a during a time
interval T . The other one keeps System-a during a time
τa (xk), and then the System keeps System-b during a time
T − τa (xk).

At the next stage, we derive the Poincaré map for the
following analysis. A map MAk is defined by the following
equation if τa ≥ T is satisfied.

MAk : R2 → R2

{

xk 7−→ xk+1 = ϕa (T, xk, yk, λa, λc)
yk 7−→ yk+1 = φa (T, xk, yk, λa, λc)

.
(6)

Likewise, a map MBk is defined by the following equation
if τa < T is satisfied.

MBk : R2 → R2

xk 7−→ xk+1 = Mb ◦ Ma.
(7)

The maps Ma and Mb is defined as follows:

Ma : R2 →
∏

{

xk 7−→ xq = ϕa (τa, xk, yk, λa, λc)
yk 7−→ yq = φa (τa, xk, yk, λa, λc)

,
(8)

Mb :
∏
→ R2















xq 7−→ xk+1 = ϕb

(

T − τa, xq, yq, λb, λc

)

yq 7−→ yk+1 = φb

(

T − τa, xq, yq, λb, λc

) .
(9)

a Tb a b
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Figure 1: Example of behavior.

Based on Eqs. (6) and (7), let the exact Poincaré map be

xk+1 =

[

F (1, xk, yk, λa, λb, λc)
G (1, xk, yk, λa, λb, λc)

]

=



































[

FA (xk, yk, λa, λc)
GA (xk, yk, λa, λc)

]

, yk ≤ D
[

FB (xk, yk, λa, λb, λc)
GB (xk, yk, λa, λb, λc)

]

, yk > D
, (10)

where a border D is

D = φa (−T, xk+1, yk+1, λa, λc) . (11)

2.2. Algorithm for calculating bifurcation point

The conditional equation for the period-p solution is de-
fined as follows:

[

F (p, xk, yk, λa, λb, λc) − xk

G (p, xk, yk, λa, λb, λc) − yk

]

= 0. (12)

We assume that the border-collision bifurcation occurs
when a solution yk just on the border D. This situation is
expressed as follows:

yk − D = 0. (13)

Based on Eqs. (12) and (13), we get

P (xk, yk, λc1) =





















F (p, xk, yk, λc1) − xk

G (p, xk, yk, λc1) − yk

yk − D





















= 0, (14)

where a parameter λc1 belongs to a parameter λc. Although
the previous algorithm numerically calculates Eq. (14) ??,
the proposed algorithm can derive Eq. (14) with the exact
solution. But, we need the numerical computation then for
calculating the bifurcation point of border collision. The
Jacobian matrix is derived based on Eq. (14). Specifically,
we get

DP (xk, yk, λc1) =























































∂F
∂xk
− 1

∂F
∂yk

∂F
∂λc1

∂G
∂xk

∂G
∂yk
− 1

∂G
∂λc1

0 1
∂φa

∂λc1























































. (15)

3. Example of the application

We apply the method to the current mode controlled
buck-boost converter (see Fig. 2). Note that we only con-
sider the continuous conduction mode for the sake of the
simplicity. Moreover, we use the dimensionless values:
y =

√
Li, x =

√
Cv, τ = t/

√
LC, σ =

√
L/C/ (2R), and

B =
√

CE. The circuit equations are derived as follows:


























dx
dτ
= −2σx

dy
dτ
= B

, SW : ON, (16)
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dx
dτ
= y − 2σx

dy
dτ
= −x

, SW : OFF. (17)

Figure 3 shows the behavior of the waveforms. The
Poincaré map is derived with the exact solution.
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xk+1

yk+1

]

=































































































[

xke2αT

yk + BT

]

, yk ≤ D







































































eατb
[

xke2ατa cos βτb

+
1
β

{

αxke2ατa

+

(

α2
+ β2
)

yref

}

sin βτb

]

eατb [yref cos βτb +
1
β

{

xke2ατa

+αyref } sin βτb]







































































, yk > D
,

(18)

where α = −σ, β =
√
σ2 − 1, and τa (yk) = (yref − yk) /B,

respectively. τb is expressed as follows:

τb (yk) = T
[

1 −
(

τa

T
mod 1

)]

. (19)
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Figure 2: Buck-boost converter.

kT (k+1)T (k+2)T (k+3)T

x

y

yk
k+y 2

yq

xk+2

xk

k+y 1

xk+1

yref

τ

xq

ON ON OFF

a bT
SW

clock

k+y 3

xk+3

yq

xq

ON

a b

OFF

Figure 3: Behavior of the buck-boost converter.

In addition, the border D is given by

D = yref − BT. (20)

Note that we omit the detailed expressions for the behavior
of the waveforms and for the derivation of the Poincaré map
because they have reported in many previous papers [9,10].

In the following analysis, we fix the parameters σ and
T as σ = 0.2795 and T = 1.1180 [11]. Figure 4 shows
an example of the 1 parameter bifurcation diagram upon
varying the bifurcation parameter B from B = 0.0 to
B = 0.1. We observe the period-doubling bifurcation and
the border-collision bifurcation in the figure. For exam-
ple, the period-1 solution bifurcates to the period-2 solution
around B = 0.08 through the period-doubling bifurcation.
On the other hand, it is observed that the border-collision
bifurcation occurs and the period-2 solution bifurcates to
the period-4 solution around B = 0.05; because a part of the
period-2 solution collides with the border D and period-4
solution is generated. Specifically, Fig. 5 shows the exam-
ples of the waveforms and the corresponding phase plane.
This figure corresponds to the parameters (a) and (b) in Fig.
4. It is also clear from Fig. 5 that a part of the period-2 solu-
tion bifurcates to the border D and the period-4 solution is
generated. So, we focused on this border-collision bifurca-
tion, and applied the proposed algorithm. Table 1 shows the
calculation results. The table says that the border-collision
bifurcation appears around B = 0.052 when yref = 0.08.
The bifurcation point B = 0.052 is correct in the 1 param-
eter bifurcation diagram (see 4). Therefore, we conclude
that the proposed algorithm can calculate the bifurcation
point of the border-collision.

4. Conclusion

In this paper, we have presented an algorithm for calcu-
lating the bifurcation point of the border-collision in the
piecewise linear system based on the Poincaré map ap-
proach. First, we explained the system dynamics. Then, we
constructed the algorithm with the exact solution. Finally,
we applied the algorithm for the current mode controlled
buck-boost converter and calculated the bifurcation point of
the border-collision. The proposed algorithm do not need
to calculate the Poincaré map and its derivative numeri-
cally. We know that the numerical computation processes
for deriving the Poincaré map and its derivative is compli-
cated. Therefore, we believe that the proposed algorithm
is valuable to calculate the bifurcation point of the border-
collision in the high-dimensional system. Moreover, the
mathematical tool MAPLE will help us to derive the ex-
act Poincaré map and its derivative in the high-dimensional
systems. In future, we will apply the algorithm to the high-
dimensional systems.
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