
IEICE Proceeding Series

Accurate and Rigorous Logarithm Function Algorithm

Naoya Yamanaka, Shin'ichi Oishi

Vol. 1 pp. 820-823
Publication Date: 2014/03/17
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers

Downloaded from www.proceeding.ieice.org

Accurate and Rigorous Logarithm Function Algorithm

Naoya Yamanaka† and Shin’ichi Oishi‡

†Research Institute for Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan

‡Faculty of Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan

Email: naoya yamanaka@suou.waseda.jp, oishi@waseda.jp

Abstract—This paper is concerned with numerical al-
gorithms retaining high reliability, high accuracy and high
portability. In this paper, an algorithm with high re-
liability means a numerical algorithm which outputs a
mathematically-rigorous result. An algorithm with high
accuracy represents an algorithm which returns a result
with high accuracy. Furthermore, an algorithm with high
portability indicates an algorithm which calculates a result
without relying on any numerical environment. In this pa-
per, numerical logarithm algorithm retaining high reliabil-
ity, high accuracy and high portability is discussed.

1. Introduction

Todays libraries for the approximation of elementary
functions are very fast and the results are mostly of very
high accuracy. For a good introduction and summary of
state-of-art methods [6]. The achieved accuracy does not
exceed one or two ulp1 for almost all input arguments; how-
ever, there is no proof for that. In this paper, we discuss
a reliable, accurate, portable implementation of the loga-
rithm function. We intend to utilize the marvelous accuracy
by a table approach. Proposed algorithm delivers rigorous
bounds for the result for all floating-point input arguments.
The order of evaluation of the formula is carefully chosen
to diminish accumulation of rounding errors. As a result
we obtain the relative accuracy of the logarithm function
value is better than 0.5ulp.

Throughout this paper, we assume floating-point arith-
metic adhering to IEEE standard 754-1985. IEEE standard
754-1985 is one of a technical standard established by the
IEEE and the most widely-used standard for floating point
computation, followed by many hardware and software im-
plementations. Proposed algorithm is based on computer
interval arithmetic adhering to the standard. Interval arith-
metic is a numerical method developed by mathematicians
since the 1950s and 1960s as an approach to putting bounds
on rounding errors and measurement errors in mathemat-
ical computation and thus developing numerical methods
that yield reliable results. It represents each value as a
range of possibilities. The interval arithmetic on floating-

1ulp means “unit in last place”, the relative error unit. In double format
ulp= 2−52.

point arithmetic with changing rounding mode is widely
used. Rounding mode is one of defined parameter in IEEE
standard 754-1985. The standard defines four rounding al-
gorithms: rounding to nearest, round toward zero, round to-
ward plus-infinity, round toward minus-infinity. However,
changing rounding mode takes some computational costs,
and the commands to change the mode vary widely de-
pending on the numerical environment. Besides, numerical
environments which do not have the commands to change
the mode exist. For these problems, an algorithm only in
rounding to nearest is proposed.

2. Preliminary

2.1. Error Free Transformations

In this section, we briefly review some algorithms called
Error-Free Transformations.

Throughout this paper, we assume floating-point arith-
metic adhering to IEEE standard 754 double precision.
Let fl (· · ·) be the result of floating-point operations, where
all operations inside parentheses are executed by ordinary
floating-point arithmetic in rounding-to-nearest. We as-
sume that neither overflow nor underflow occur. Further-
more, we use MATLAB-like programming description to
describe algorithms.

First, we introduce the addition algorithm TwoSum.
Knuth [4] presented Algorithm 1 which transforms a pair
(x, y) with x, y ∈ F into a new pair (a, b) with a, b ∈ F sat-
isfying x + y = a + b with a = fl (x + y), |b| ≤ eps |a|. If

Algorithm 1 TwoSum
Error-free transformation of the sum of two floating-point
numbers.[Knuth [4]]

function [a, b] = TwoSum(x, y)
a = fl (x + y)
c = fl (a − x)
b = fl ((x − (a − c)) + (y − c))

end

|a| ≤ |b| satisfies, Algorithm 2 outputs the same results as
TwoSum:

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 820 -

Algorithm 2 FastTwoSum
Error-free transformation of the sum of two floating-point
numbers.[Knuth [4]]

function [x, y] = FastTwoSum(a, b)
　 x = fl (a + b)
　 y = fl (b − (x − a))
end

Next, we proceed to the dot product. We know a useful
multiplication algorithm TwoProduct[5] , which transforms
a pair (x, y) with x, y ∈ F into a new pair (a, b) with a, b ∈ F
satisfying x · y = a + b, |b| ≤ eps |a|.

The multiplication routine needs to split the input argu-
ments into two parts. For the number t given by eps = 2−t,
we define s := dt/2e; in double precision we have t = 53
and s = 27. The following Algorithm 3 by Dekker [5]
splits a floating point number x ∈ F into two parts x, y,
where both parts have at most (s − 1) nonzero bits.

Algorithm 3 Split
Split algorithm splits a t-bits floating-point number x ∈ F
into xh, xt ∈ F such that x = xh + xt.

function [xh, xt] = Split(x)
c = fl

(
(2dt/2e + 1) · x

)
xh = fl (c − (c − x))
xt = fl (x − xh)

end

Using Algorithm 3, the following multiplication routine
by G.W. Veltkamp [5] can be formulated (Algorithm 4).

Algorithm 4 TwoProduct
Error-free transformation of the product of two floating-
point numbers [Veltkamp [5]].

function [a, b] = TwoProduct(x, y)
a = fl (x · y)
[x1, x2] = Split(x)
[y1, y2] = Split(y)
b = fl (x2 · y2 − (((a − x1 · y1) − x2 · y1) − x1 · y2))

end

2.2. Proposed Algorithm for Logarithm Function

In this paper, we consider the calculation of logarithm
function for a floating point number. All floating number x
can be rewritten as follows:

x = m × 2exponent.

Here, an integer exponent must be fixed in order to satisfy

1
√

2
< m ≤

√
2. (1)

Now, we consider the calculation of log (m). Let floating
point numbers ki (1 ≤ i ≤ n) be floating point numbers
which are all zeros except the leading 5 bits. The idea of
the proposed algorithm is based on the finding the floating
numbers ki (1 ≤ i ≤ n) in order to satisfy

k1 (1 + k2) (1 + k3) · · · (1 + kn) m ≈ 1. (2)

log(m) can be written as

log (m) = log (k1 · · · (1 + kn) m) − log (k1 · · · (1 + kn))

thus,

log (k1 · · · (1 + kn) m) ≈ 0

log (k1 · · · (1 + kn)) = log (k1) +
n∑

i=2

log (1 + ki)

hold. From these, we can see that if we can find ki (1 ≤ i ≤
n), the logarithm value of m can be written by the summa-
tion of the logarithm values of ki.

Furthermore, the proposed algorithm is based on a fa-
mous technique called “Table-Based Methods” [6]. We
calculate the accurate value of log (ki) and make a table in
advance. Using this technique, the proposed algorithm can
access the accurate values so that the algorithm is fast and
rigorous.

2.3. Division Algorithm for Double-double Arithmetic

In a numerical calculation sometimes we need higher-
than double-precision floating-point arithmetic to allow us
to be confident a result. One alternative is to rewrite the
program to use a software package implementing arbitrary-
precision extended floating-point arithmetic such as MPFR
[1] or ARPREC [2], and try to choose a suitable precision.
There are possibilities intermediate between the largest
hardware floating-point format and the general arbitrary-
precision software which combine a considerable amount
of extra precision with a relatively speaking modest fac-
tor loss in speed. An alternative approach is to store
numbers in a multiple-component format, where a num-
ber is expressed as unevaluated sums of ordinary floating-
point words, each with its own significand and exponent.
The multiple-digit approach can represent a much larger
range of numbers, whereas the multiple-component ap-
proach has the advantage in speed. Sometimes merely dou-
bling the number of bits in a double-floating-point frac-
tion is enough, in which case arithmetic on double-double
operands would suffice.

A double-double number is an unevaluated sum of two
double precision numbers, capable of representing at least
106 bits of significand. A natural idea is to manipulate

- 821 -

such unevaluated sums. This is the underlying principle
of double-double arithmetic. It consisted in representing
a number x as the unevaluated sum of two basic precision
floating-point numbers:

x = xh + xl (3)

such that the significands of xh and xl do not overlap, which
means here that

|xl| ≤ eps |xh| . (4)

To calculate the floating numbers ki (1 ≤ i ≤ n), we
sometimes need verified and accurate division algorithm
for double-double arithmetic. In this paper we proposed an
division algorithm for double-double arithmetic instead of
the widely-used algorithm developed by Hida et. al. and
we proved the maximum error bound of the proposed divi-
sion algorithm.

2.3.1. Hida et. al.’s Division Algorithm

Hida et. al. have proposed two division algorithms in
their software QD/DD[3]: one is accurate div and the other
is sloppy div. Using accurate div, we can get an accurate
result because the algorithm treats error carefully. The fact
is that accurate div uses two times of the multiplication
algorithm for double-double arithmetic. sloppy div is less
accurate than accurate div, but the computational speed of
sloppy div is faster than that of accurate div. sloppy div
uses one-time multiplication algorithm for double-double
arithmetic. The following Algorithm 5 is sloppy div.

Algorithm 5 sloppy div
Division algorithm for double-double arithmetic based on
double arithmetic [3].

function z = sloppy div(x, y)
zh = fl (xh/yh)
[rh, rl] = mul(y, zh)
[s1, s2] = TwoSum(xh,−rh)
s2 = fl (s2 − rl + xl)
zl = fl ((s1 + s2) /yh)
[zh, zl] = FastTwoSum(zh, zl)

end

Here, Algorithm mul is as follows (Algorithm 6):

2.3.2. Yamanaka and Oishi’s Division Algorithm

Yamanaka and Oishi have proposed another division al-
gorithm. As we have seen, because of using the multiplica-
tion algorithm for double-double arithmetic, it is difficult
to speed up the computation time of sloppy div. To con-
struct an algorithm which is faster than sloppy div, we’ve
presented Algorithm 7 which does not use the multiplica-
tion algorithm for double-double arithmetic.

Algorithm 6 mul
Multiplication algorithm for double-double arithmetic
based on double arithmetic [3].

function z = mul(x, y)
[zh, zl] = TwoProduct(xh, yh)
zl = fl (zl + xh · yl + xl · yh)
[zh, zl] = FastTwoSum(zh, zl)

end

Algorithm 7 Yamanaka and Oishi’s Algorithm
Division algorithm for double-double arithmetic.

function z = modified sloppy div(x, y)
yr = fl (1/yr)
zh = fl (xh · yr)
[th, tl] = TwoProduct(zh, yh)
zl = fl (((xh − th) − tl) · yr + zh · (xl/xh − yl · yr))
[zh, zl] = FastTwoSum(zh, zl)

end

Algorithm 7 is based on the following approximation:

xh + xl

yh + yl
=

xh (1 + xr)
yh (1 + yr)

=
xh

yh
(1 + xr)

(
1 − yr +

y2
r

1 + yr

)
(5)

' xh

yh
+

xh

yh

(
xr − yr + O

(
eps2

))
, (6)

where xr, yr denote

xr =
xl

xh
, yr =

yl

yh
. (7)

It is easily seen that the proposed algorithm does not use
mul, which is the multiplication algorithm for double-
double arithmetic. Moreover, it also seen that the number
of the floating point operation of the proposed algorithm is
only 30 flops. By contrast, that of Algorithm 5 is 36 flops.

2.3.3. Error bound of Algorithm 7

We now consider the problem of calculating basic op-
erations of infimum-supremum double-double intervals in
rounding to nearest; i.e. we are concerned with the problem
of calculating an interval Z = [z, z] with z, z ∈ F includ-
ing X ◦ Y when double-double intervals X, Y are given. To
solve this problem, it is obvious that the algorithms of basic
operations of two floating point numbers are adequate from
the definition of infimum-supremum interval operations:

X◦Y := [min(x◦y, x◦y, x◦y, x◦y), max(x◦y, x◦y, x◦y, x◦y)].
(8)

Thus, we’re considering the problem of calculating an in-
terval Z containing x ◦ y for all double-double numbers x, y
and ◦ ∈ {+,−,×,÷} provided fl (x ◦ y) is finite.

- 822 -

To solve this problem, we present the following theo-
rem. Now we consider the error of the division algorithm
(Algorithm 7).

Theorem 1
Let x, y be double-double numbers consisting of xh, xl and
yh, yl. Denote z be the result of Algorithm 7, then∣∣∣∣∣z − x

y

∣∣∣∣∣ 5 eps2(22 + 45eps)
∣∣∣∣∣ xh

yh

∣∣∣∣∣ . (9)

holds when we assume that no overflow and underflow oc-
cur.

2.4. Decomposition of A Floating Point Number

Let floating point numbers ki (1 ≤ i ≤ n) be floating
point numbers which are all zeros except the leading 5 bits.
Then for a floating point number f , we propose an algo-
rithm to decompose of f as

f = t1 (1 + t2) (1 + t3) · · · (1 + tn) + δ. (10)

Algorithm 8 Decomposition of a floating point number
function t1:n = Decomposition (f)
　 s1 = f ; t1 = zero5 (s1) ; u1 = s1 − t1;
　 s2 = u1/t1; t2 = zero5 (s2) ; u2 = s2 − t2;
　 for i = 3 : n
　 si = modified sloppy div ([ui, 0], [1, ti]) ;
　 ti = zero5 (si) ;
　 ui = si − ti;
　 end
end

Here “zero5 (·)” means a function to cover zeros except
the leading 5 bits. t1 implies an approximation of f and
ti (2 ≤ i ≤ n) involve approximations of relative er-
rors of an approximate value by the decomposition using
t1, t2, · · · , ti−1, and for them, t1 ≥ t2 ≥ · · · ≥ tn holds.

3. Numerical Results

In this section, we present the numerical experiments.
These experiments have been done by a computer having
Intel Core 2 Duo 2.13 GHz CPU with 4G Byte Memory.
We use C++ language under the Mac OS X.

We compare some errors and computational costs of the
following two kinds of outputs.

1. Comparison with a result of verified interval of
double-double number

theo. max err time ratio
Proposed Method 8.0 × 10−30 0.10

MPFR 1.2 × 10−32 (1.0)

In this experiment, we’ve set the mantissa of MPFR
as 106-bit.

2. Comparison with a result of verified interval of double
number

We’re set 10,000 random points of [1, 100] as the in-
putted floating point numbers. The unit of errors in
the following table is ulp.

ave. err max. err theo. max err time ratio
Prop. 0.251 0.499 0.501 4.6

CRlibm 0.500 0.500 0.500 (1.0)
Intlab 1.051 2.480 3.000 –∗

∗ We could not make the program on C++ based on
Rump’s algorithm, so we could not compare the com-
putational time of it.

Acknowledgments

This work was supported by Grant-in-Aid for Young Sci-
entists (B) 24700015, and further, this paper is a part of
the outcome of research performed under a Waseda Univer-
sity Grant for Special Research Projects (Project number:
2012A-508).

References

[1] L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, P.
Zimmermann, “MPFR: A multiple-precision binary
floating-point library with correct rounding”, ACM
Transactions on Mathematical Software (TOMS),
33:2, No.13. 2007.

[2] D. H. Bailey, Y. Hida, X. S. Li and B. Thomp-
son. “ARPREC: an arbitrary precision computational
package”, Lawrence Berkeley National Laboratory.
Berkeley. CA94720. 2002.

[3] Y. Hida, X. S. Li and D. H. Bailey. “Quad-Double
Arithmetic: Algorithms, Implementation, and Appli-
cation” October 30, 2000 Report LBL-46996.

[4] D. E. Knuth: The Art of Computer Programming:
Seminumerical Algorithms, vol. 2, Addison-Wesley,
Reading, Massachusetts, 1969.

[5] T. J. Dekker: A floating-point technique for extending
the available precision, Numer. Math., 18 (1971), pp.
224–242.

[6] J.M.Muller, Elementary Functions, Birkhauser
Boston, 2nd edition, 2006.

[7] S.M.Rump, Rigorous and portable standard func-
tions. BIT Numerical Mathematics, 41(3), pp. 540–
562, 2001.

[8] CRlibm – Correctly Rounded mathematical library:
http://lipforge.ens-lyon.fr/www/crlibm/

- 823 -

