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Abstract—We propose an adaptive delayed feedback
control technique of nonlinear maps by using a parameter
adjustment together with resetting a variable. This tech-
nique can convert transient processes into either stable or
unstable periodic orbits. Moreover, the controlled orbit in-
cludes a pre-determined point in the phase space, which is
related to the resetting value of the variable. We consider
the control process as a kind of memory processes, i.e. the
resetting value is stored in the dynamical system after con-
trol. To accomplish the storing function of memory, we
investigate the system whether it can be a closed-loop sys-
tem by turning off the resetting.

1. Introduction

Chaotic dynamics is known as its unpredictability in the
long-term behavior. This property is due to the instabil-
ity of chaotic behavior, namely the sensitive dependency
on initial conditions. Therefore, it had been believed that
chaotic irregular behavior should be avoided when a engi-
neering system is designed. However, chaotic dynamics is
not completely random but it has a kind of hidden struc-
ture in its irregular motion. By using this structure, the
concept of controlling chaos has been proposed in 1990 by
Ott, Grebogi, and Yorke [1]. They showed that a chaotic
irregular trajectory in a low dimensional system is able to
be controlled to one of unstable periodic orbits embedded
within a chaotic attractor by adding a small perturbation to
the system parameter. Surprisingly, they did not avoid but
exploited the above undesired properties of chaotic dynam-
ics for controlling it.

Following the seminal work by Ott et. al., a lot of re-
searches on controlling chaos has been conducted both the-
oretically and experimentally [2]. Along the research line,
the authors have proposed an adaptive delayed feedback
control method that does not require any detailed informa-
tion on a controlled system and only requires tuning of in-
teger parameters [3, 4]. This control method has been also
successfully implemented into an analog electric circuit ex-
perimentally [5].

In this presentation, we modify the adaptive control
method to convert transient processes to periodic orbits by
using resetting mechanism. More precisely, we reset the
state variable to a fixed value every certain time interval,
then the system dynamics is controlled to a periodic or-

bit which includes the reset value of the variable. In ad-
dition, we can vary the reset value to some extent, which
implies that periodic orbits passing arbitrary point in a lim-
ited phase space can be controlled by the modified method.
We interpret this control process as a kind of memory pro-
cesses, where the strength of an external input related to
the reset value is stored as the controlled periodic orbit. Fi-
nally, we briefly mention how to maintain the stored mem-
ory, where the reset input is turned off. Specifically, we
consider the effect of noise to maintaining the stored mem-
ory.

The following is the organization of the paper. In Sec-
tion 2, we explain the adaptive delayed feedback control in
the Logistic map. Then, we modify the control method by
adding a resetting mechanism and illustrate its controlling
process by using a nonlinear map in Section 3. In Section
4, we demonstrate numerical simulations for the modified
control method and for variation of the reseting point in
the phase space. We explain the change of a stability of
controlled periodic orbits as a bifurcation in the nonlinear
map. Section 5 focuses on the application of the control
process for an analog memory system. We investigate the
stability of controlled states when noise exists. Finally, we
summarize the results in Section 6.

2. The adaptive delayed feedback control

Let us introduce the adaptive delayed feedback control
[3] in the Logistic map: xn+1 = f (xn, a) = axn(1 − xn),
where xn ∈ [0, 1] is a state variable and a ∈ [0, 4] is a
parameter. The adaptive delayed feedback from the state
variable xn−τ is applied to a with a time dependent func-
tion as an+1 = gn(xn−τ, an). Note that a is not constant but
time dependent, denoted by an. The time scale of an is de-
termined by a integer parameter T such that τ ≤ T . The
feedback function gn is as follows:

gn(xn−τ, an) =
{
φ−1(xn−τ) (n = iT )
an (otherwise), (1)

where φ(a) = ax∗(1 − x∗) ≡ a/4 with the critical point x∗,
and xn−τ = max{x j}n−T< j≤n (n = iT ).

The process of the control is as follows. First, we set the
parameter a0 = 4 for an initial value which generates fully
developed chaos for the Logistic map. Then, we apply the
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feedback function gn to the parameter an with an appropri-
ate value of T . The value of an decreases monotonically
by the control. Regarding the bifurcation diagram with re-
spect to a, once the value of an is in the region of a periodic
window with the period less than T , xn−τ corresponds to
the largest value of the periodic orbit. In the bifurcation
diagram, such a periodic orbit as a function of a has a tan-
gent point with the line x = a/4 . This tangent point is a
local attractor for the two dimensional system with respect
to xn and an. Therefore, once the an comes close to such a
local attractor, it converges to the tangent point which cor-
responds to a superstable periodic orbit for the dynamics of
xn. This is the end of the control. Although a chaotic orbit
is controlled to a superstable periodic orbit by the method,
the period is not known in advance. We have proposed how
to control the period by adding a further condition [4].

3. Resetting inputs

Concerning the dynamics of an for the control method
introduced in the previous section, we cannot follow the
dynamics of an outside of the periodic windows, i.e.
chaotic region in the bifurcation diagram. This is because
xn−τ sensitively depends on both xn−T for n = iT and an

due to chaotic dynamics. In order to overcome this dif-
ficulty, we add one condition to the control method. In
the original method, we change an every T steps and use
the value of xiT for calculating xiT+1. Instead of this, we
use the same pre-determined value for all the calculation of
xiT+1, i = 1, 2, . . ., denoted by xr. By this resetting of xn

every T steps, we can follow the behavior of an outside of
the periodic windows.

In Figure 1, we show the trajectory of an when we add
the resetting condition when T = 4. As can be seen, the
dynamics of an is clearly observed in the region from a0 to
the finally controlled state. The piece-wise nonlinear map
represents the modified control method, i.e. xn−τ for the
map xn+1 = f (xn, a) with x0 = xr as a function of a. We al-
low for the initial value of xT−τ of the control process to be
taken as an arbitrary value in [0, 1]. This initial value cor-
responds to the x coordinate of the controlling trajectory at
a0 = 4 in Figure 1. Note that by introducing the resetting
mechanism, we can see the controlling process from any
initial conditions to the controlled state (the tangent points)
by using the piece-wise nonlinear map. Therefore, math-
ematical analysis of the control method might be possible
more or less. However, such analysis is out of scope of the
current paper and will be done somewhere else.

Finally, let us note that the condition of the controlled
state is described as

f j(xr, an) = x̃, (2)

where j ≤ T . Since xr is defined as xr ≡ f 2(x̃, an), con-
trolled state of xn should be periodic. Moreover, if x̃ = x∗,
then controlled periodic orbits are superstable, which im-
plies that controlled points in the (a, x) plane corresponds

to those of the original method. Furthermore, the controlled
an provides a periodic orbit including x∗ that is related to
the resetting value.
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Figure 1: (Top) Trajectory of an (the dotted line) in the
(a, x) space when the resetting control is applied. The solid
curve is a piece-wise nonlinear map representing the reset-
ting control. The number of iterations of f lead xr to the
largest value of {xi}0≤i≤T with respect to a. The dashed-
dotted line corresponds to the diagonal line for a standard
map in (xn, xn+1). The trajectory are controlled to the tan-
gent point between the nonlinear map and the line corre-
sponding to superstable periodic point. T = 4. (Bottom)
The controlled periodic orbit for the dynamics of xn corre-
sponding to the controlled an in the top panel. The periodic
orbit include the critical point x∗.

4. Numerical simulations

In this section, we show numerical simulations of the
proposed control method for different initial conditions of
xT−τ. Then, we investigate the controlled periodic orbits
when x̃ is varied from the critical point x∗.

Figure 2 shows controlled attractors in the (a, x) space
for x̃ = x∗ and T = 6. The initial conditions are a0 = 4
and 10000 different values of xT−τ taken from the interval
[0.995 : 1]. As can be seen, all the existing attractors are
controlled. Note that the period of superstable periodic or-
bit for the dynamics of xn is less than T .

Next, we are interested in varying the value of x̃ from x∗.
As can be seen in the top panel of Figure 3, slightly chang-
ing the value of x̃ from x∗ make the diagonal line cross with
the piece-wise nonlinear map. This is because f (x̃, a) is
less than the maximum of the map xn+1 = f (xn, a). Accord-
ing to this change, the dynamics of an is no more monoton-
ically decreasing but possibly increasing. The inset in the
top panel shows that the trajectory of an increases around
the fixed point. Another remarked thing by changing x̃
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Figure 2: All the controlled attractors (an > 3.4) in the
(a, x) space when T = 6, indicated by +. Initial conditions
are a0 = 4 and 10000 different values of xT−τ such that
xT−τ ∈ [0.995, 1]. The indicated period corresponds to the
period of a superstable periodic orbits in the dynamic of xn

for each attractor.

from x∗ is that the corresponding periodic orbit for the dy-
namics of xn can be unstable. In the bottom panel of Figure
3, the periodic orbit of xn is shown together with a chaotic
attractor which is generated by the value of the controlled
an without resetting. This implies that the resetting input
xr or x̃ keeps the periodicity of xn in spite of its instability.
In other words, the controlled state in the whole system of
an and xn is an attractor due to the stability of an. It should
be noted that the periodic orbit of xn includes the resetting
input as 1 − x̃. This is because we use xr as f 2(x̃, an).

Now, what does happen when we vary x̃ more? Figure 4
answers this question. First, the stability of periodic orbit
of xn changes from superstable to “normally” stable, and
to unstable, as x̃ varies. This change of stability is shown
in the top left panel of Figure 4 that shows bifurcation of
a fixed point of an when x̃ varies from x∗ to 0.47. The
black circles represent that the corresponding periodic or-
bits of xn are stable for those fixed points of an. The fixed
points of an not covered by the circles provide unstable pe-
riodic orbits for the dynamics of xn. Next, the fixed point
of an becomes unstable via the period doubling bifurcation
at around x̃ ≈ 0.482. Note that the periodic orbit of xn

no longer exists as an attractor after the bifurcation. The
period doubling bifurcation can be seen from the panel (i)
and (ii) of Figure 4, where the nonlinear map and the diag-
onal line shift and the stability of the fixed point changes.
When the relation between the nonlinear map and the diag-
onal line changes further, we can observe chaotic attractors
in the (a, x) space as shown in the panel (iii) of Figure 4.
Finally, a boundary crisis occurs in the (a, x) space when
x̃ ≈ 0.474, the stable attractor of an disappears.

5. As an analog memory

In the previous section, we observe that there exist mul-
tiple stable attractors for the dynamics of an, even if the
corresponding orbit of xn is stably or unstably periodic,
or not periodic. In this section, we interpret those attrac-
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Figure 3: (Top) Control map when x̃ = 0.49. T = 6. xT−τ =
0.9837. The inset is magnification around the controlled
point. The piece-wise nonlinear map has cross points with
the line x = x̃(1 − x̃)a. (Bottom) Periodic orbit for the
controlled an(≈ 3.851) with the resetting input. The gray
orbit shows the chaotic trajectory for stationary state with
regards to the value of an without resetting. The controlled
periodic orbit include 1 − x̃ instead of x̃.
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Figure 4: (Left top) Bifurcation behavior of one of the con-
trolled fixed points of an with regards to x̃. The circles
correspond to stable periodic orbits for the dynamics of xn.
The fixed points of an not covered by the circles generate
unstable periodic orbits for the dynamics of xn. The labels
(i), (ii), and (iii) in the panel correspond to the labels in the
other panels. (Panel (i)) The trajectory of an around a fixed
point for x̃ = 0.485. (Panel (ii)) The periodic trajectory
of an with period 2 for x̃ = 0.48. (Panel (iii)) The chaotic
trajectory of an for x̃ = 0.475.
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tors as analog memory states and the control process as
a memory process, where the system stores the strength
of the resetting input xr ≡ f 2(x̃, an) in terms of the con-
trolled parameter, denoted by a f . Specifically, a f is related
to the periodic orbits of xn and the resetting input such that
xn−τ = x̃(1 − x̃)a f , where xn−τ is the largest value of the
periodic orbit. Due to this relation, a f can be maintained as
long as the periodic orbits is controlled with adding the re-
seting input. However, there is no meaning in the memory
system with adding the resetting input practically. There-
fore, we turn off the resetting input once the storing, i.e.
the control, is finished. Moreover, we take into account the
effect of noise to the system after storing.

The following is the algorithm how to keep the value of
a f without the resetting input and with noise. The final
value of a f with the resetting input is denoted by a′f and
the final value of x̃ determined by xn−τ−1 is denoted by x̃′.
First, we iterate xn+1 = f (xn, a′f ) for T steps from x0 =

f (x̃′, a′f ). Then, set the largest value of the T -step time
series from x1 to xT as x̂. Now, the value of a′f is updated
as a′f = x̂/x̃′(1 − x̃′). Finally, we update x̃′ as x̃′ + δ, where
δ follows N(0,D). We repeat this procedure with adding
different noise every updating.

We do numerical simulations for maintaining controlled
a f with noise by the above algorithm. Figure 5 shows the
behavior of a′f when T = 6 and D = 0.0001. In the top
panel of Figure 5, we can confirm that the controlled a f is
maintained even if there exist noise and the resetting input
is turned off. The inset shows the fluctuation of a′f around
the controlled fixed point a f . However, it is not possible
to maintain the state around a f for a long time, since noise
is added every update and there is a basin boundary of the
attractor of a f . In the bottom panel of Figure 5, the time se-
ries of x̂ is shown. Although the state of a′f ∼ x̂ fluctuates
around the controlled state for a while, it suddenly goes
down to the other attractor and fluctuates around it. The
variation of the fluctuation of x̂ depends on attractors. This
result implies that it is not possible to maintain the mem-
ory state for an arbitrary long time without resetting and
with some amount of noise. However, if the noise is not
so strong and the time for maintaining a memory state is
not so long, the proposed system can be used as an analog
memory system.

6. Summary

In this presentation, we have modified the adaptive de-
layed feedback control method by adding resetting mech-
anism, and showed its effectiveness by numerical simula-
tions. By the modification, we can control transient pro-
cesses to periodic orbits including a pre-determined point
in the phase space. Furthermore, we have investigated the
behavior of the controlled states by varying the resetting
input as a bifurcation parameter. By observing the bifurca-
tion, we have made the system more robust than the origi-
nal system in terms of control, namely the dynamics of the
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Figure 5: (Top) Maintained a′f in the (a, x) space for T = 6
with the noise of D = 0.0001. The length of time for the
maintaining is 2800 updates. (Bottom) The time series of
of x̂ for a longer time of updates than 2800 updates. After
sudden transition, a′f stays around a different attractor.

original state variable is stabilized by introducing dynamics
to the system parameter. We have also discussed the possi-
ble application of the control system for a temporal analog
memory system if the noise is not so strong.
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