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Abstract—In this talk, a computer-assisted analysis pro-

cedure is proposed with respect to the invertibility of some

elliptic operators. Based on a verified eigenvalue evalu-

ation for the Laplace operator, the inverse of an elliptic

operator is proved with computer-assistance. Whether the

operator has its inverse plays important role in computer-

assisted proof methods for nonlinear elliptic problems.

The invertibility of considered operator is related to some

shifted eigenvalue or weighted eigenvalue problems. A

computer-assisted analysis method is proposed in this talk.

Furthermore, some applications are presented for semilin-

ear elliptic problems.

1. Framework of verified computations for semilinear
partial differential equations

Let Ω be bounded polygonal domain in R2 with arbi-

trary shape. In this talk, let us be concerned with Dirichlet

boundary value problem of the semilinear elliptic equation:{ −Δu = f (u), in Ω,
u = 0, on ∂Ω

(1)

where f : H1
0(Ω)→ L2(Ω) is assumed to be Fréchet differ-

entiable. For example,

f (u) = c1u + c2u2 + c3u3 + ... + cpup + g

with ci ∈ L∞(Ω), (i = 1, ..., p < ∞) and g ∈ L2(Ω) satis-

fies this condition. Verified computation approach will be

adopted to explore the existence and local uniqueness of

weak solution of (1). Namely, if an approximate solution

is given by certain numerical method, we will try to vali-

date the existence of exact solution in the neighbourhood of

the approximation. In the classical analysis of variational

theory, weak solution of Dirichlet boundary problem (1) is

defined in the variational form:

Find u ∈ H1
0(Ω), satisfying

(∇u,∇v) = ( f (u), v), for all v ∈ H1
0(Ω).

Here, let us define

(∇u,∇v) :=

∫
Ω

∇u · ∇vdx

and

( f (u), v) :=

∫
Ω

f (u)vdx.

Now we put V = H1
0(Ω) for simple formulation. Let us

define linear and nonlinear operatorsA, N : V → V ,

(Au, v)V := (∇u,∇v),

(N(u), v)V := ( f (u), v).

Furthermore, we define F : V → V as

F (u) := Au − N(u).

The original problem (1) is transformed into the following

nonlinear operator equation:

Find u ∈ V, satisfying F (u) = 0 in V. (2)

F : V → V is assumed to be the Fréchet differentiable

mapping. Let û ∈ Vh ⊂ V be an approximate solution to

(2). Fréchet derivative of F at û is denoted by F ′[û] : V →
V . i.e. satisfying

‖F (û + ν) − F (û) − F ′[û]ν‖V = o(‖ν‖V ), ‖ν‖V → 0.

In order to verify the existence and local uniqueness of the

exact solution in the neighborhood of û, we consider to ap-

ply the Newton-Kantorovich theorem [1] to (2).

Theorem 1 (Newton-Kantorovich)
Assuming the Fréchet derivative F ′[û] : V → V is nonsin-
gular and satisfies

‖F ′[û]−1F (û)‖V ≤ α,
for a certain positive α. Then, let

B(û, 2α) := {v ∈ V : ‖v − û‖V ≤ 2α}
be a closed ball centered at û with radius 2α. Let also
D ⊃ B(û, 2α) be an open ball in V. We assume that for a
certain positive ω, it holds:

‖F ′[û]−1(F ′[v] − F ′[w])‖V,V ≤ ω‖v − w‖V , ∀v,w ∈ D.

If αω ≤ 1
2

holds, then there is a solution u ∈ V of (2)
satisfying

‖u − û‖V ≤ ρ :=
1 − √1 − 2αω

ω
.

Furthermore, the solution u is unique in B(û, ρ).
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Remark 1 To apply the Newon-Kantorovich theorem, we
will calculate three constants below explicitly.

‖F ′[û]−1‖V,V ≤ C1, (3)

‖F (û)‖V ≤ C2,h,

‖F ′[v] − F ′[w]‖V,V ≤ C3‖v − w‖V , ∀v,w ∈ D ⊂ V.

The constants above, C1, C2,h and C3, will yield

‖F ′[û]−1F (û)‖V ≤ C1C2,h,

and

‖F ′[û]−1(F ′[v] − F ′[w])‖V,V ≤ C1C3‖v − w‖V .

Therefore, if the condition C2
1C2,hC3 ≤ 1/2 is confirmed by

verified computations, then the existence and local unique-
ness of the solution are proved numerically based on the
Newton-Kantorovich theorem.

2. Inverse of linearized operator

This part is devoted for the inverse norm estimation of

linearized operator (3), which plays important role on the

verified computation for semilinear equations. The invert-

ibility of the Fréchet derivative F ′[û] : V → V is led by

the invertibility of an elliptic operator with respect to the

following linear elliptic equations:

{ −Δu + cu = g, in Ω,
u = 0, on ∂Ω,

(4)

where c(x) ∈ L∞(Ω) and g(x) ∈ L2(Ω). The weak form of

this problem is given by

Find u ∈ V, satisfying (∇u,∇v) + (cu, v) = (g, v), ∀v ∈ V.

The linear elliptic operator L : V → V can be defined by

(Lu, v)V := (∇u,∇v) + (cu, v), ∀v ∈ V.

Let f ′[û] be the Fréchet derivative of f at û. Putting c(x) :=

− f ′[û] as a L∞(Ω) function, we obtain L = F ′[û]. In the

following, we would like to introduce a computer-assisted

analysis procedure to show the solvability of the problem

(4). There are some existing methods for this estimation.

M. Plum uses the eigenvalue evaluation with his original

homotopy technique [2]. Using the perturbation theorem of

linear operator, S. Oishi evaluates the inverse of linearized

operator for ODEs. Further M.T. Nakao, K. Hashimoto and

Y. Watanabe [3] is evaluated the same value based on the

fixed point theorem. This talk uses the eigenvalue evalua-

tion the same as M. Plum’s procedure. One feature of our

method is that it doesn’t use homotopy technique. We try

to bound the weighted eigenvalue directly.

2.1. Weighted eigenvalue problem

Let σ be the real number satisfying

σ ≥ max
x∈Ω

c(x).

The ‘σ-inner product’ and its norm are defined by

(u, v)σ := (∇u,∇v) + σ(u, v)

and

‖u‖σ :=
√

(u, u)σ.

V is also Hilbert space with its inner product (·, ·)σ. For the

linearized inverse norm estimation, the following property

is obtained.

Lemma 1 Assuming the set of real numbers satisfies

M = { μ ∈ R : ∃u ∈ V satisfying

(∇u,∇v) + (c(x)u, v) = μ(u, v)σ, v ∈ V}.

If 0 �M holds, then there exists L−1 such that

‖L−1‖V,V ≤ max
μ∈M
|μ|−1.

Proof. M is the spectrum of the elliptic operator L. If

0 � M, then 0 is in the resolvent set, which means L has

its inverse. Moreover,

‖L−1‖V,V = sup
u∈V
‖u‖V
‖Lu‖V ≤ max

μ∈M
|μ|−1.

Proposal method evaluates the absolute minimum eigen-

value ofM, which is isolated with finite multiplicity. Let us

transform the eigenvalue problem into the following form.

(∇u,∇v) + (c(x)u, v) = μ(u, v)σ

⇐⇒ (u, v)σ =
1

1 − μ (a2u, v),

where a(x) :=
√
σ − c(x). Putting

λ =
1

1 − μ ,

we have a weighted eigenvalue problem: Find u ∈ V and

λ ∈ R such that

(u, v)σ = λ(a2u, v), ∀v ∈ V. (5)

2.2. Verified eigenvalue bounds

In order to bound the absolute value of μ neighboring

0, we will find the minimizer of |1 − λ−1| using eigenval-

ues of (5). If the λ includes 1 in its interval, μ is expected

to contain 0. Then, the verification is failed based on the

Lemma 1. On the basis of verified evaluation technique

for Laplace operator [4], we obtain the verified bound of

the weighted eigenvalue evaluation. First of all, the upper
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bound of desired eigenvalues are obtained by the Rayleigh-

Ritz method. Let Vh be the finite dimensional subspace of

V spanned by the finite element base functions {φi}i=1,...,N

for given N ∈ N. S and A denote matrices whose i- j ele-

ments are given by

S i j := (φi, φ j)σ, Ai j := (a2φi, φ j).

Then λh
1
< λh

2
< ... < λh

N denote eigenvalues of the general-

ize eigenvalue problem: S x = λhAx, which is bounded by

verified numerical computations. The Rayleigh-Ritz bound

gives

λk ≤ λh
k for k = 1, ...,N.

The lower bound is also needed. It is more difficult work

than the upper bound. M. Plum [2] has proposed the pro-

cedure mixing the homotopy technique and the Lehmann-

Goerisch method to obtain the lower bound. In this talk,

we propose a method of obtaining the lower bound us-

ing the error analysis of an orthogonal projection. This

method have a feature that we will bound eigenvalues of

the weighted eigenvalue problem directly. This work is in-

spired by the previous work shown by X. Liu and S. Oishi

[4]. Let Ph : V → Vh be the orthogonal projection defined

by

(u − Phu, vh)σ = 0, ∀vh ∈ Vh.

For given g = −Δu + σu ∈ L2(Ω), CM denotes a positive

constant satisfying the error estimate

‖u − Phu‖σ ≤ CM‖g‖L2 . (6)

The following main theorem of this work is introduced.

Theorem 2 Let λk be the k-th eigenvalue of (5) whose ap-
proximation is denoted by λh

k with verification. If

1 − λk‖a‖2∞C2
M > 0

holds, then the verified lower bound of eigenvalue

λh
k

1 + λh
k‖a‖2∞C2

M

≤ λk

is obtained.

Proof. Let uk be an eigenfunction corresponding to each λk

with ‖auk‖L2 = 1. Let Ek be the space spanned by eigen-

functioins {ui}i=1,...,k. For ∀v =
∑k

i=1 diui ∈ Ek, we have

‖av‖L2 = 1. (6) and Aubin-Nitsche’s trick give

‖v − Phv‖L2 ≤ CM‖v − Phv‖σ, ∀v ∈ V.

From the definition of uk, it follows

λk :=
‖uk‖2σ
‖auk‖2L2

= ‖uk‖2σ,

which implies ‖v‖2σ/‖av‖2L2 ≤ λk for v ∈ Ek. Now, the min-

max principle follows

λh
k ≤ max

v∈Ek

‖Phv‖2σ
‖aPhv‖2L2

= max
v∈Ek

‖v‖2σ − ‖v − Phv‖2σ
‖av + aPhv − av‖2L2

= max
v∈Ek

‖v‖2σ − ‖v − Phv‖2σ
‖av‖2L2 + 2(av, aPhv − av)L2 + ‖aPhv − av‖2L2

= max
v∈Ek

λk − ‖v − Phv‖2σ
1 + 2(av, aPhv − av)L2 + ‖aPhv − av‖2L2

≤ max
v∈Ek

λk − ‖v − Phv‖2σ
1 − 2‖aPhv − av‖L2 + ‖aPhv − av‖2L2

= max
v∈Ek

λk − ‖v − Phv‖2σ
(1 − ‖aPhv − av‖L2 )2

≤ max
v∈Ek

λk − ‖v − Phv‖2σ
(1 − ‖a‖∞CM‖v − Phv‖σ)2

.

Let

h(t) :=
λk − t2

(1 − ‖a‖∞CMt)2
.

It is obtain that h(t) is monotonically increasing if t satisfies

t ≤ λk‖a‖∞CM and 1 − ‖a‖∞CMt > 0. Here,

‖v − Phv‖σ ≤ CM‖ − Δv + σv‖L2

= CM‖λka2v‖L2

≤ λkCM‖a‖∞‖av‖L2

= λk‖a‖∞CM

holds and the assumption 1−λk‖a‖2∞C2
M > 0 follows. Thus,

λh
k ≤ max

v∈Ek
h(‖v − Phv‖σ)

≤ max
v∈Ek

h(λk‖a‖∞CM)

=
λk

1 − λk‖a‖2∞C2
M

.

From this inequality, it is easy to have the desired result.

Remark 2 Through the proposed method gives the di-
rect evaluation for lower bounds, it is a rough bound
for verification. If we want to have more precise evalu-
ation, the Lehmann-Goerisch method can be applicable.
However, the Lehmann-Goerisch method requires the suf-
ficiently smooth base function (e.g. C1-smooth functions).
When we choose P3 or more higher oder finite element base
functions, the accurate evaluation can be available.

3. Computational results

Now, we will present a numerical result. All computa-

tions are carried out on Mac OS X, 2.26GHz Quad-Core

Intel Xeon by using MATLAB 2011a with a toolbox for
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verified computations, INTLAB [5]. We also use the mesh

generator Gmsh [6] or our own uniform mesh generator.

For an application of our computer-assisted proof method,

we treat a semilinear Dirichlet boundary value problem on

Ω = (0, 1) × (0, 1):

{ −Δu = u2, in Ω,
u(x) = 0, on ∂Ω.

(7)

Obviously, the Fréchet derivative of right-hand side is given

by f ′(û) = 2û. An approximate solution û is calculated

by FEM with piecewise quadratic (P2) finite elements on

uniform mesh and non-uniform mesh, see Fig.1 and 2.
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Fig.1: û of (7) on uniform mesh.
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Fig.2: û of (7) on non-uniform mesh.

The verification of an elliptic operator is succeeded by

proposal method and the existing method [3]. Comparing

two methods, the proposed method is easy to verify the

invertibility and accuracy is bit better. The weak condition

for the verification is superiority of our proposed method.

In Table 1 and 2, the result of our proposal method for

linearized inverse norm estimation is given. Here, λ−, λ+

are eigenvalues of (5) satisfying λ− < 1.0 < λ+. Their

upper and lower bound of eigenvalues are bounded by the

Rayleigh-Ritz bound and our main theorem (Theorem 2).

Table 1: Computational results on uniform mesh

2−η λ− λ+ C1 [3]

3 0.501
484

1.574
434

3.626 7.370

4 0.501
496

1.573
35

2.938 3.363

5 0.501
499

1.573
62

2.794 2.887

6 0.501
499

1.573
0

2.759 2.782

Table 2: Computational results on non-uniform mesh

2−η λ− λ+ C1 [3]

3 0.495
36

1.555
096

16.0651 Failed

4 0.499
83

1.569
425

3.685 7.804

5 0.499
4

1.572
24

2.998 3.570

6 0.499
8

1.573
60

2.805 2.920
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