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Abstract—
In this paper, we consider the eigenvalue problem of el-

liptic operator L := −∆u + σu over 2D domain Ω:

Find u ∈ H1
0(Ω) and λ ∈ R , Lu = λu , (1)

where σ ∈ L∞(Ω). In case of domain being polygo-
nal one with re-entrant corner, the eigenfunction of the
problem above has singularity, which brings difficulty in
bounding the eigenvalues. For this problem, we develop
new method to deal with the singularity. Moreover, the
Lehmann-Goerisch theorem is applied to produce high pre-
cision eigenvalue bounds.

1. Introduction

To solve the eigenvalue problem (1), we consider the
weak form: find u ∈ H1

0(Ω)

λ ∈ R, s.t. (∇u,∇v) + (σu, v) = λ(u, v),∀v ∈ H1
0(Ω) , (2)

where H1
0(Ω) is a kind of Sobolev function space; (·, ·) is the

inner product in L2(Ω) or L2(Ω)2. Let’s denote the eigen-
values of (2) by λ1 ≤ λ2 ≤ · · · .

The problem 2 can be solved approximately by using fi-
nite element method. Let T h be a triangulation of domain
Ω. The piecewise-continuous linear finite element space
Vh ⊂ H1

0(Ω), which has the hat function as its basis func-
tion, is adopted here as the approximation space. Suppose
that dim(Vh) = n. The Ritz-Galerkin method solves the
variation problem (2) in Vh: Find λh ∈ R and uh ∈ Vh s.t.

(∇uh,∇vh) + (σuh, vh) = λh (uh, vh), ∀vh ∈ Vh . (3)

The eigenvalue problem (3) has finite eigen-pairs, which
we denote by {λh

i , u
h
i }

n
i=1 and assume λh

1 ≤ λh
2 ≤ · · · ≤ λh

n
and (uh

i , u
h
j ) = δi, j.

The high precision bounds for the nth leading eigenval-
ues {λi}

n
i=1 are obtained in three steps.

Step 1: the base eigenvalue problem −∆u = λu, that is,
σ = 0, is solved approximately by finite element method as
in (3), and an error estimation for the approximate eigen-
values is given in [2].

Step 2: the eigenvalue bounds for general elliptic op-
erator in consideration is obtained by applying the homo-
topy method [2], which estimates the eigenvalue variation
in transforming the base problem −∆u = λu to the one
wanted. If the domain is convex, this step can be simplified
by extending the result of [2].

Step 3: the Lehmann-Goerish’s theorem [3,4] is applied
to sharpen the bounds along with proper selection of
base function to approximate the eigenfunction. To deal
with the domain of free shape, the singular base function
corresponding to the singular part of eigenfunction, and
Bezier patch over triangulation of domain are used.

The structure of this paper is as follows. In section 2, 3,
4, we display the main theorems needed in our frame to es-
timate eigenvalues. In section 5, we illustrate an examples
to demonstrate the efficiency of our proposed method.

2. Explicit upper bound and lower bound for eigenval-
ues in case σ = 0

First, we construct an explicit error estimation for the
FEM solution of Poisson’s equation, which is the key part
of the algorithm to bound the Laplacian eigenvalues. We
consider Poisson’s equation associated with homogeneous
Dirichlet boundary condition: for f ∈ L2(Ω), find u such
that,

−∆u = f in Ω, u = 0 on ∂Ω . (4)

The weak formulation of above problem is to find u in
H1

0(Ω) such that,

(∇u,∇v) = ( f , v) for v ∈ H1
0(Ω) . (5)

The FEM solution uh ∈ Vh is given by solving above weak
formulation in Vh:

(∇uh,∇vh) = ( f , vh) for vh ∈ Vh . (6)

The selection of H1
0(Ω) and Vh in §1, along with Lax-

Milgram’s theorem, assures the existence and uniqueness
of solution u and uh.

The classical error estimation theory gives the a priori
estimation for FEM solution in a qualitative way:

‖u − uh‖H1 ≤ Chα‖ f ‖L2 ,
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where the constant C, independent from f , is bounded but
usually unknown; the exponent α is the convergence order.
In case of homogeneous Dirichlet or Neumann boundary
condition over convex domain, we know that the solution
u of (5) belongs to H2(Ω), for which we call H2-regularity
(see, e.g., [5] ), and the order α can be one. However, such
a regularity can not be expected for a non-convex domain
or the mixed boundary condition, which brings difficulty
to the FEM error estimation.

Next, by applying the technique of hypercircle method
from Prager-Synge’s theorem[9], we will develop concrete
a priori error estimation in the form as follows,

|u − uh|H1 ≤ Mh‖ f ‖L2 , ‖u − uh‖L2 ≤ M2
h‖ f ‖L2 , (7)

where Mh is a computable quantity depending only on the
triangulation of domain.

First, let’s review several classical finite element spaces.

• Piecewise constant function space Xh:

Xh := {v ∈ L2(Ω)|v is constant on each element of T h}

• Lowest order Raviart-Thomas mixed FEM space Wh:

Wh := { ph ∈ H(div,Ω) | ph = (aK + cK x, bK + cKy)

in K ∈ T h} ,

where aK , bK , cK are constants on element K and
H(div,Ω) is defined by

H(div,Ω) = {q ∈ (L2(Ω))2 | div q ∈ L2(Ω)} .

• Subspace Wh
fh

of Wh corresponding to fh ∈ Xh:

Wh
fh := { ph ∈ Wh | div ph + fh = 0 on each K ∈ T h} .

The classical analysis declares div(Wh) = Xh (c.f. Chap-
ter IV.1 of [8]). Let us introduce the L2-projection π0,h:
L2(Ω)→ Xh : for v ∈ L2(Ω), π0,hv ∈ Xh satisfies,

(v − π0,hv, vh) = 0, ∀vh ∈ Xh. (8)

The computable interpolation error estimation for π0,h has
been well investigated, for example, c.f., Liu and Kikuchi
[10], which reads,

‖v − π0,hv‖L2 ≤ C0h|v|H1 for v ∈ H1(Ω), (9)

where h is the mesh size; constants C0 has concreate values.
We introduce a computable quantity κh for purpose of

developing the a priori estimation.

κh := max
fh∈Xh\{0}

min
vh∈Vh

min
ph∈Wh

fh

‖ph − ∇vh‖L2/‖ fh‖L2 (10)

In [2], we developed the computable a priori estimation
under the above preparation.

Theorem 2.1 ( A priori error estimation) For any f ∈

L2(Ω), let u ∈ H1
0(Ω) and uh ∈ Vh be the solutions of

variational problems (5) and (6), respectively. Let Mh :=√
C2

0h2 + κh
2, where C0 is the constant appearing in (9).

Then, we have,

|u − uh|H1 ≤ Mh‖ f ‖L2 , ‖u − uh‖L2 ≤ M2
h‖ f ‖L2 . (11)

By using the quantity Mh, in [2], we obtained an explicit
lower and upper bound for eigenvalues of L in case of σ =

0.

Theorem 2.2 ( [2] ) Suppose λk M2
h < 1. Then the lower

bound for λk is given by

λk ≥ λ
h
k/(1 + M2

hλ
h
k). (1 ≤ k ≤ n). (12)

3. Homotopy method

The homotopy method is developed independently in
[12] and [11]. Suppose A0 and A1 are two differential op-
erators associated with eigenvalues as λ0

1 ≤ λ
0
2 ≤ · · · , and

λ1
1 ≤ λ

1
2 ≤ · · · , respectively. Usually, the eigenvalues {λ0

k}’s
are known, which we call by base problem, and {λ1

k} are the
one to estimate. The main idea of homotopy method is to
introduce an intermediate operator As as followed:

As := (1 − s)A0 + sA1.

The eigenvalues of As, denoted by {λs
k}, are supposed to

satisfy

λ0
k ≤ λ

s1
k ≤ λ

s2
k ≤ λ

1
k , 0 ≤ s1 ≤ s2 ≤ 1.

By using such intermediate operator As, one can obtain a
lower bound ρ for certain λN , λN−1 < ρ ≤ λN [11]. Such
a bound ρ may be rough, but it can be sharpened by futher
applying Lehmann-Goerisch’s theorem.

To apply the homotopy method to our problem, we in-
troduce a constant σ0 such that σ0 + σ(x) > 0 on domain
Ω. Thus, a homotopy can be created between the following
two operators:

A0u := −∆u, A1u := −∆u + (σ + σ0)u

The base problem for A0u = −∆u is already solved by
the estimation in (12). Then we can apply the homotopy
method to bound eigenvalues of A1. As the eigenvalues of
Lu = −∆u +σu is just a shift of the ones of A1 by −σ0, the
eigenvalues bounds of L are obtained imediately.

4. Improve the precision of egienvalue bounds

The eigenvalue bound from finite element method and
the homotopy method are usually too rough. Here, we in-
troduce Lehmann’s method [14], which takes use of a pri-
ori rough lower bound for eigenvalues to sharpen the eigen-
value bounds. Such a method has an extention by F. Go-
eriesh for applicability, see, [13]. We display Lehmann’s
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method in the following theorem, for which, a concise
proof can be found in M. Plum [1].

Theorem 4.1 Let L be self-adjoint operator defined over
Hilbert space V with norm 〈, 〉. Let the eigenvalues of
Lu = λu be {λ1, λ2, · · · } in an increasing order. Take m
linearly independent function v1, · · · , vm from V. Define
m × m matrix A1, A2, A3:

A1(i, j) := 〈Lvi, v j〉, A2(i, j) := 〈vi, v j〉, A3(i, j) := 〈Lvi, Lv j〉.

Denote by Λm the upper bound of λm obtained by Rayleigh-
Ritz’s method, that is, the maximum eigenvalue of A1x =

λA2x. Take a quantity ν such that,

Λm < ν ≤ λm+1 . (13)

Define matrices B1, B2 by

B1 := A1 − νA2, B2 := A3 − 2νA1 + ν2A2 .

Thus, (−B1) and B2 must be positive definite matrices. Let
the eigenvalues of eigen-problem B1x = µB2x be µ1 ≤ µ2 ≤

· · · ≤ µm < 0. Then lower bound for eigenvalue problem
Lu = λu is given by

λm+1−k ≥ ν +
1
µk

(k = 1, · · · ,m). (14)

Remark 4.2 The test functions vi’s will be well designed to
approximate the exact eigenfunction accurately. Once vi’s
are fixed, the lower bound given by (14) is monotonically
increasing on variable ν. However, the selection of ν is not
so sensible. Even rough lower bound ν of λm+1 can provide
precise lower bounds through (14).

The lower bound from Homotopy method is a good
choice of ν in (13). To find proper trial functions {vi}, we
adopt C1 continuous Bernstein polynomial function over
triangle element or rectangle element as basis function.
Also, to approximate the eigenfunctions which is singular
around the re-entrant corner, we will introduce trial func-
tions having a singular part.

(−1, 1) (0, 1)

(1,−1)

(1, 0)

(−1,−1)

(0, 0)

supp(ηi)

Figure 1: Uniform rectangle mesh of L-shaped domain and
support of ηi (h = 1/3)

Let’s take the uniform rectangular mesh T h of L-shaped
domain as an example, c.f., Figure 4. Define trial function
v ∈ C1(Ω) by

v :=
∑

K∈T h

PN
K(x, y) + b1η1 + b2η2 (15)

where PN
K(x, y) is the Bernstein polynomial of degree N

over K; η′k s (k = 1, 2) are singular functions with support
only on elements neighbour to the corner,

ηk(r, θ) = r2k/3 sin
2k
3

(θ + π/2) Ψ (k = 1, 2).

Here Ψ is a C1 continuous cut-off function that makes ηk

vanish on the elements not connected to the re-entrant cor-
ner:

Ψ := (1−x2/h2)2(1−y2/h2)2 for |x|, |y| ≤ h; Ψ := 0, otherwise.

where h is the mesh size. The C1 continuous condition of v
and boundary condition will bring constraint conditions to
the construction of PN

K . We point out that η1 < H2(Ω), but
∆η1 ∈ L2(Ω).

Thus, the m test functions {vi}i=1,··· ,m in Theorem 4.1 can
be taken as the eigenfunctions corresponding to the leading
mth eigenvalues obtained by solving variational eigenvalue
problem with trial functions of the form (15).

5. Computation eaxmaple

The eigenvalue problem with homogeneous Dirichlet
boundary condition over domain Ω = [0, 2]×[0, 2]\[1, 2]×
[1, 2] is considered here. The quantities needed by the es-
timation of projection Ph, such that, κh, C0h and Mh, are
displayed in Table 1. In this case, Mh tends to zero in order
about 0.7, that is, Mh = O(h0.7).

(0, 2) (1, 2)

(1, 0) (2, 0)

(2, 1)
(0, 1)

(0, 0)

h =
1
4

h κh C0h Mh order of κh

1/4 0.1466 0.080 0.1668 -
1/8 0.0882 0.040 0.0968 0.73

1/16 0.0538 0.020 0.0574 0.71
1/32 0.0332 0.010 0.0348 0.70

Table 1: Uniform mesh and values of κh

To apply Lehmann’s method, we take ν := 39 < λ6.
Thus we can obtain more precise bound for λ1, · · · , λ5,
where the polynomial PN

K’s degree is selected to be N = 8,
N = 10 and singular basis introduced in §?? are used. The
result is displayed in Table 3. As numerical quadrature is
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λi Lower bound Approx. Upper bound RelErr
1 9.5585 9.63972 9.6699 0.012
2 14.950 15.1970 15.225 0.018
3 19.326 19.7392 19.787 0.024
4 28.605 29.5215 29.626 0.035
5 30.866 31.9126 32.058 0.038
6 39.687 41.4745 41.680 0.049

Table 2: Eigenvalue evaluation based on (12) (h = 1/32)

λi N=6 N=10

1 9.63973
55 9.639724

17

2 15.197253
30 15.19725193

75

3 19.732920881
65 19.739208802180

25

4 29.52149
34 29.521482

77

5 31.91264
18 31.912636

21

Table 3: High precision eigenvalues bounds

used to calculate the inner product of singular function, for
the moment, we can not guarantee the numerical results of
Table 3.

The general differential operator L, that is, σ , 0, for
which the homotopy method is needed, will be displayed
in the talk on the conference.
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