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Abstract—The bifurcation structure of the aug-
mented Lorenz equations as a starlike network of
Lorenz subsystems is investigated as a function of the
reduced Rayleigh number and the number of Lorenz
subsystems by performing numerical simulations. Es-
timated bifurcation diagrams are discussed in relation
to chaotic synchronization of directly coupled aug-
mented oscillators with parameter mismatch.

1. Introduction

Motivated by the chaotic waterwheel whose rota-
tional motion is governed by the Lorenz equations
[1]–[3], we recently developed a chaotic gas turbine
that randomly reverses its direction of rotation [4]–[7]
simulating the motion of the convective roll in tur-
bulent Rayleigh-Bénard convection at high Rayleigh
numbers exceeding 106 [8]–[10]. Our gas turbine is
a planar type that is often used for designing micro
gas turbine engines based on micro-electro-mechanical
systems [11, 12]. However, our machine is driven by
the aerodynamic drag generated on its turbine blades
staying within a limited space (referred to as the work-
ing range) around the central axis of the turbine, un-
like existing gas turbines whose rotational motions are
driven by aerodynamic lift. As a result, the equa-
tions of motion of our turbine are represented as a par-
ticular system of nonlinear ordinary differential equa-
tions. That is, the nondimensionalized expressions for
the equations of motion are represented as a starlike
network of infinitely many Lorenz subsystems sharing
the dimensionless angular velocity as the central node.
We refer to the nondimensionalized equations with the
number of Lorenz subsystems truncated at a fine num-
ber of N as augmented Lorenz equations.

The augmented Lorenz equations are dependent on
three dimensionless parameters defined in terms of the
mechanical parameters of the turbine. These parame-
ters entirely determine the dynamical properties of the
augmented Lorenz equations. Two of these dimension-
less parameters are equivalent to the Prandtl number
and the reduced Rayleigh number for Rayleigh-Bénard
convection [4, 7]. The applicability of the augmented
Lorenz model is not restricted to the chaotic gas tur-

bine when the model is viewed as a general dynami-
cal model. Then, the three dimensionless parameters
specifying the augmented Lorenz model are no longer
bound by the mechanical structure of the turbine and
can instead be set to arbitrary real numbers convenient
for the application in hand. For instance, coupled non-
linear oscillators governed by the augmented Lorenz
equations are applicable to chaos-based communica-
tions using chaotic masking [13, 14]. However, the
bifurcation structure of the augmented Lorenz model
is indispensable for developing such applications. Al-
though the augmented Lorenz model inherits the dy-
namical nature of the Lorenz model whose bifurcation
structure has been well investigated [15, 16], much is
unknown about its bifurcation structure.

In this paper, we examine the bifurcation structure
of the augmented Lorenz model using numerical sim-
ulations, focusing on its dependence on the reduced
Rayleigh number and the number of Lorenz subsys-
tems. The working range and the Prandtl number are
fixed at the values that give rise to chaos for the chaotic
gas turbine. We also assess the chaotic synchroniz-
ability of directly coupled oscillators governed by the
augmented Lorenz equations as a function of param-
eter mismatch in the equations. Estimated bifurca-
tion diagrams are discussed in relation to the chaotic
synchronizability of the coupled oscillators. In real-
world applications, coupled oscillators inevitably have
parameter mismatch in the dynamics governing the
oscillators. The degree of synchronizability of the cou-
pled oscillators as a function of parameter mismatch
is important information in the development of real-
world applications.

2. Theory

In this section, we give a brief summary for the aug-
mented Lorenz model. Details will be given elsewhere
[7]. The augmented Lorenz equations simulate the
physical aspects of Rayleigh-Bénard convection of flu-
ids heated from below and cooled from above in much
the same way as the Lorenz model. That is, buoy-
ancy, viscous drag and thermal dissipation are embed-
ded into the Prandtl number and the reduced Rayleigh
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number. The augmented Lorenz equations as a general
dynamical model are given as

dX

dτ
= σ

[
tr

(
(n−1)2Y

) − X
]

, (1)

dY
dτ

= RX − nZX − Y , (2)

dZ
dτ

= nYX − Z , (3)

R = R0n2ΦW ,

where X is a dimensionless scalar variable, Y and
Z are dimensionless N × N diagonal matrices whose
diagonal components Yn and Zn with n running
from 1 to N represent dimensionless scalar vari-
ables, respectively, τ is dimensionless time, tr(·) de-
notes the diagonal sum of a matrix, σ and R0

are dimensionless scalar parameters. Dimensionless
matrix R is defined using n = diag(1, 2, · · · , N),
W = diag(sinφ, sin 2φ, · · · , sinNφ) and Φ =
diag

(
φ − 1

2 sin 2φ · · · 1
n−1 sin(n − 1)φ − 1

n+1 sin(n +

1)φ · · · 1
N−1 sin(N − 1)φ− 1

N+1 sin(N + 1)φ
)

, where
φ is the working range.

When N = 1, Eqs. (1)–(3) are exactly equivalent
to the Lorenz equations with a geometric parameter
of unity. In this sense, σ and R0 correspond to the
Prandtl number and the reduced Rayleigh number,
respectively. Equations (1)–(3) can be viewed as a
starlike network of N Lorenz subsystems sharing X as
the central node.

Nonlinear oscillators governed by the augmented
Lorenz equations can be coupled via the direct cou-
pling of X or Y. Let us consider a drive-response sys-
tem consisting of two augmented Lorenz oscillators.
When the drive system is subject to Eqs. (1)–(3), the
response system is subject to

X ′ = X , (4)
Ẏ′ = R′X ′ − nZ′X ′ − Y′ , (5)
Ż′ = nY′X ′ − Z′ , (6)

for the direct coupling of X or

Ẋ ′ = σ′ [tr (
(n−1)2Y′) − X ′] , (7)

Y′ = Y , (8)
Ż′ = nY′X ′ − Z′ , (9)

for the direct coupling of Y, where X ′, Y′ and Z′ de-
note the variables for the response system, R′ includes
the reduced Rayleigh number R′

0 and σ′ is the Prandtl
number, specifying the response system, respectively.

3. Numerical Analysis

In this study, the working range φ and the Prandtl
number σ are fixed at φ = 0.36 [rad] and σ = 28.3, re-
spectively. These parameter settings generate chaotic

motion for the chaotic gas turbine [4, 6, 7]. Bifurca-
tion diagrams of the augmented Lorenz model were
estimated as functions of R0 and N by numerically
integrating Eqs. (1)–(3) using the fourth-order Runge-
Kutta method with a dimensionless time width of
4 × 10−5 for 0 ≤ R0 ≤ 3500 and 1 < N ≤ 1000.
The minimum difference between adjacent values of
R0 was set to ΔR0 = 1. The initial value of X was
given as X(0) = 0 and those of Yn and Zn were given
as Gaussian random numbers with mean 0 and vari-
ance 1. The initial 250 000 solutions were discarded to
eliminate the initial transient solutions depending on
the initial conditions.

Figure 1 shows estimated bifurcation diagrams as
functions of R0 at N = 100. The estimated diagrams
correspond to the cross-sectional plots for −0.01 ≤
Y10 ≤ 0.01 if N ≥ 10 and those for −0.01 ≤ YN−1 ≤
0.01 otherwise. The general features of the bifurcation
diagrams are qualitatively similar to that of the Lorenz
model, despite some minor differences. The threshold
of R0 for the onset of chaos was found to shift from
∼ 500 to ∼ 1200 as N increases from 5 to 6 and ap-
proach ∼ 1500 at N = 100. A window in which chaotic
oscillations are superseded by nonchaotic oscillations
appears between ∼ 1600 and ∼ 1800 when N exceeds
350. It can be seen that chaos is well developed at
R0 ≥ 2000.

We next measured the synchronization error be-
tween two augmented Lorenz oscillators coupled via
the direct coupling of X under parameter mismatch
in R0. The drive oscillator is governed by Eqs. (1)–(3)
and the response oscillator by Eqs. (4)–(6). Compar-
ing Eqs. (4)–(6) with Eqs. (7)–(9), the synchronization
error due to the direct coupling of X is found to be
induced by the parameter mismatch in R0, not by that
in σ. The rate of parameter mismatch in R0 is defined
as r = (R′

0 − R0)/R0. We assume that the coupled
oscillators with N = 100 are a typical system in the
application of the augmented Lorenz model to chaotic
synchronization. In this case, the chaotic oscillation is
well developed around R0 = 3000 as shown in Fig. 1.

For r increasing from −0.1 to 0.1 around R0 = 3000
with an increment width of 0.01, Eqs. (1)–(3) and
Eqs. (4)–(6) with N = 100 were numerically integrated
using the fourth-order Runge-Kutta method with a di-
mensionless time width of 4×10−5. The initial 450 000
solutions were discarded to eliminate the initial tran-
sient part of the synchronization process. Then, the
synchronization error was estimated for T = 50 000 so-
lutions of Zn and Z ′

n at each r. The synchronization
error E(r) as a function of r is defined as

E(r) =
1
T

T∑
t=1

√√√√ 1
N

N∑
n=1

[Z ′
n(t, r) − Zn(t)]2 . (10)

Results are shown in Fig. 2. The synchronization error
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Figure 1: Bifurcation diagram as function of R0 at
N = 100 (σ = 28.3).

at r = 0, i.e., with no parameter mismatch, was esti-
mated to be E(0) ≈ 0.006. The increase in E(r) with
increasing parameter mismatch is linear with respect
to | r | and symmetrical around r = 0.

4. Discussion

The general features of the bifurcation structure of
the augmented Lorenz model are qualitatively simi-
lar to that of the Lorenz model. This suggests that
the augmented Lorenz model inherits the dynamical
nature of the Lorenz model. In fact, chaotic synchro-
nization is also achieved via the direct coupling of X
for the coupled augmented Lorenz oscillators in much
the same way as coupled Lorenz oscillators.

In applications of the augmented Lorenz model
such as chaos-based communications based on chaotic
masking, large-scale oscillators would be required to
generate chaos with a sufficient degree of complexity.
For such demands, augmented Lorenz oscillators with
N = 100 would suffice. In real-world applications,
parameter mismatch between the drive system and re-
sponse system is often inevitable. Our results indicate
that the rate of increment in the synchronization er-
ror is approximately 36 times as large as the synchro-
nization error at no parameter mismatch per 1 % of
parameter mismatch. These estimates will be useful
for designing the tolerance of a secure communication
system based on chaotic masking to parameter mis-
match as well as for determining the minimal differ-
ence between adjacent encryption-decryption keys in
the R0-key space.
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Figure 2: Synchronization error E(r) as function of
rate of parameter mismatch r. R0 = 3000 and N =
100 (σ = 28.3).

5. Conclusions

We examined the bifurcation structure of the aug-
mented Lorenz model as a function of the reduced
Rayleigh number R0 and the number of Lorenz sub-
systems N . The bifurcation structure was found to be
qualitatively similar to that of the Lorenz model. The
synchronization error between two augmented Lorenz
oscillators with N = 100 coupled via the direct cou-
pling of X was estimated as a function of parameter
mismatch in R0 around R0 = 3000 and was found
to increase linearly with increasing rate of parameter
mismatch. The application of the augmented Lorenz
model to real-world problems is an open question to
be investigated in future studies.
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