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Abstract—We perform a detailed bifurcation analysis
of Kerr optical frequency combs generated with mono-
lithic whispering gallery mode resonators. We use a multi-
mode dynamics approach to investigate the stability of Kerr
combs excited by an external laser pump. Our results en-
able to understand accurately the process of Kerr comb for-
mation through a nonlinear bifurcation analysis.

1. Introduction

Optical frequency combs are a set of equidistant spectral
lines in the Fourier spectrum. This feature is useful in
many applications such as sensing, optical engineering,
metrology, or microwave generation. It has been shown
recently that optical frequency comb could be gener-
ated using the whispering gallery mode (WGMs) of a
monolithic resonator. The essential advantages of this
system would be intrinsic simplicity, small size, low power
consumption and higher performances in terms of phase
noise.

In WGM optical frequency comb generators, the dielec-
tric micro-resonator is shaped as a cylinder, a sphere or a
torus whose principal dimension may range from few tens
of micrometers to few millimeters. Provided that the bulk
material is low-loss and the resonator is properly prepared
(sub-nanometer surface irregularities), the light is trapped
within the eigenmodes of the micro-cavity, which are usu-
ally referred to as whispering gallery modes. Their free-
spectral range may vary from few GHz to few THz de-
pending on the resonator’s radius, and their quality factor Q
can be exceptionally high, greater than 1011. In these res-
onators, the small volume of confinement, high photon den-
sity and long photon storage time (proportional to the qual-
ity factor Q) induce a very strong light-matter interaction.
Depending on the dielectric material, this strong coupling
can generate a highly efficient Four-Wave Mixing (FWM),
where two pump photons are transformed into two side-
bands photons through the Kerr nonlinearity. Provided that
the pump is powerful enough, an optical frequency comb,
sometimes referred to as Kerr comb, is generated through
a cascaded creation of such side-bands photons, resulting
from the interaction of the pump and the WGMs via the
Kerr nonlinearity (see [1, 2, 3] and references therein).

However, the theory of comb generation using WGMs is
not complete and several phenomena are still unexplained.

This is due to the fact that this spatiotemporal system is
strongly nonlinear, multidimensional, and involves several
parameters that are coupled in a very complex, nontrivial
fashion. In this paper, we describe a multimode dynamics
approach to study this system, with an emphasis on the role
played by the nonlinearity, the Q factor of the resonator,
and the cavity dispersion. In particular, we develop a
bifurcation analysis showing how the comb unfolds as the
main features of the pumping (power and detuning) are
varied.

2. The system

The system basically consists in a symmetrically trun-
cated spherical cavity, coupled to the angle-polished tips
of two optical fibers, one for light injection and the other
for photon extraction. Other configurations may be con-
sidered as well (fiber taper, waveguide or prism couplings
for example), as they could also be investigated with the
formalism hereafter developed.

The electric field in the cavity can be expanded accord-
ing to the WGMs, following

E(r, t) =
∑
η

1
2
Eη(t)eiωηtΥη(r) +

1
2

EexteiΩ0t + c.c. , (1)

where η stands for the various modes under consideration,
defined by a set Υη(r) of orthonormal and vectorial eigen-
modes of frequency ωη, and by their time-varying ampli-
tude Eη(t). The constant vector Eext stands for the external
laser excitation of frequency Ω0 while “c.c.” stands for the
complex conjugate of all the preceding terms.

The explicit expression of the WGMs of a spherical cav-
ity can be obtained analytically, and have been for long in-
vestigated within the frame of morphology dependent res-
onances. The unknowns are therefore only the modal am-
plitudes. We have used a hermitian projection technique
to derive an explicit set of modal equations describing the
dynamics of the electric field in the various WGMs. We
can restrict ourselves to the quasi-degenerate limit for the
modal equations parameters, as long as we are only inter-
ested in the dynamics of WGMs that are not too far from
the pump frequency. In this case, if the field is normalized
in such a way that |Aη|

2 is equal to the number of photons
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in the mode η, the modal dynamics equations can be ex-
plicitly written as

Ȧη = −
1
2

∆ω0Aη − ig0

∑
α,β,µ

AαA
∗
βAµ ei$αβµηt

+
1
2

∆ω0 Fη ei(Ω0−ωη)t (2)

where ∆ω0 is the bandwidth of the loaded WGMs, g0
is the nonlinear gain induced by the Kerr nonlinearity,
Fη is the modal field injection from the outside, Ω0 is
the angular frequency of the laser pump excitation and
$αβµη = ωα−ωβ+ωµ−ωη is a frequency detuning induced
by the four-wave mixing process. It is noteworthy that
this detuning frequency also includes both the geometrical
and material dispersion properties of the resonator, as it is
equal to zero in the dispersionless limit.

3. Results

It is convenient to label the various eigenmodes with
their reduced angular eigennumber l = ` − `0, where `0
is the angular number of the pumped mode. With this
notation, the pumped mode corresponds to l = 0, while the
sidemodes symmetrically expand as ±l around the central
mode.

When we pump the cavity below threshold, only the
mode l = 0 is excited. At threshold, the pair of side modes
A±l appears, and an important issue is to investigate the
stability condition for the excitation of a given pair ±l of
sidemodes. This study can be performed within the frame
of so-called primary comb approximation. In fact, the pri-
mary comb is constituted with the oscillating sidemodes
whose amplitude is exclusively due to the pump, while
their phase may be affected by other sidemodes (which are
themselves exclusively pump induced). In other words, all
the photons that are in the sidemodes ±l originate from the
pump through the photonic interaction 2 ~ω0 → ~ωl+~ω−l,
while the pump is being depleted accordingly. However,
some photons are fed back through the reverse interaction
~ωl +~ω−l → 2 ~ω0. The advantage of this paradigm is that
the excited modes can in turn be considered as secondary
pumps exciting other modes on their own. The process cas-
cades up and down to generate the total comb were any four
modes fulfilling energy and angular momentum conserva-
tion requirements may a priori interact. This stability anal-
ysis has already been performed in ref. Yanne, and it was
shown that the threshold number of photons in the pumped
mode was:

|A0|
2
th =

1
2

∆ω0

g0
. (3)

So when we pump the cavity above the first order threshold,
we now have three modes: namely 0 and ±l. From the

Eq. (2), we can derive the dynamical equations for each of
these three modes:

Ȧ0 = −
1
2

∆ω0A0 − ig0

{
|A0|

2A0+2|A−l|
2A0+

2|A+l|
2A0+2A−lA+lA

∗
0e−i$±lt

}
+

1
2

∆ω0F0eiσt(4)

Ȧ±l = −
1
2

∆ω±lA±l − ig0

{
2|A0|

2A±l + 2|A∓l|
2A±l +

|A±l|
2A±l +A2

0A
∗
∓le

i$±lt
}

(5)

where $±l = 2ω0 − ω∓l − ω±l is the modal detuning. We
can remove the explicit time dependence in this equation
by introduction the transformation

B0 = A0e−iσt (6)

B±l = A±le−i(σ+ 1
2$±l)t (7)

obeying

Ḃ0 = −iσB0 −
1
2

∆ω0B0 − ig0

{
|B0|

2B0 + 2|B−l|
2B0

+2|B+l|
2B0 + 2B−lB+lB

∗
0

}
+

1
2

∆ω0F0 (8)

and

Ḃ±l = −i(σ +
1
2
$±l)B±l −

1
2

∆ω±lB±l − ig0

{
|B±l|

2B±l

+2|B∓l|
2B±l + 2|B0|

2B±l + B2
0B
∗
∓l

}
(9)

Now we can rewrite B as B0 = B0 exp[iφ0] and also B±l =

B±l exp[iφ±l]. Hence, we can suppose that the sidemodes
have the same amplitudes B+l = B−l, but different phases
φ+l , φ−l. Finally, using the stationarity relationships Ḃη =

0, we can get from Eq. (8) and Eq. (9) the equation

|F0|
2 =

4g2
0

∆ω2
0

|B0|
6 +

8σg0

∆ω2
0

|B0|
4 +
{
[1 +

4σ2

∆ω2
0

]

−
8g0

∆ω2
0

(2σ +$±l)|B±l|
2 −

96g2
0

∆ω2
0

|B±l|
4
}
|B0|

2

+
{ 4
∆ω2

0

[∆ω±l∆ω0 − 4σ2 − 2σ$±l]|B±l|
2

−
4g0

∆ω2
0

[28σ + 8$±l]|B±l|
4 −

192g2
0

∆ω2
0

|B±l|
6
}
(10)

ruling the the relationship between the external pump and
the excited modes. From Eq. (9) we can also get:

sin φ = −
∆ω±l

2g0|B0|
2 (11)

and

cos φ =
−(σ + 1

2$±l) − 3g0|B±l|
2 − 2g0|B0|

2

g0|B0|
2 (12)

with φ = φ±l + φ∓l − 2φ0. This relationships demonstrate
that φ depends only on ∆ω±l.
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We can get the dependence between |B0| and |B±l| using
Eq. (9):

36g2
0|B±l|

4 +
{
24σg0 + 12$±lg0 + 48g2

0|B0|
2
}
|B±l|

2 +

∆ω2
±l + [2σ +$±l]2 + 8g0[2σ +$±l]|B0|

2 +

12g2
0|B0|

4 = 0 , (13)

so that now we have a system of two equations with two
unknowns. We can therefore calculate the value of the sta-
tionary variables |B0|

2, |B±l|
2 and also φ.

As we continue to increase the pump power, we will
obsere the emergence of sub-harmonic comb components,
which will appear after crossing the so-called second order
threshold. For the sake of simplification, we will consider
only five modes, namely 0, ±l and the two sub-harmonic
modes ±l/2.

In order to find the threshold leading to oscillation for a
given pair of side modes A±l/2, a well-known technique is
to investigate the linear stability of the trivial equilibrium
A±l/2 = 0. This equilibrium is perturbed with δA±l/2, and
the threshold is defined by the set of parameters separating
the values for which the perturbation decays to 0 (the triv-
ial equilibrium is stable) of those where the perturbation
diverges to infinity (onset of oscillations).

The sidemode perturbation equations for the secondary
comb obey

δȦ±l/2 =
{
−

1
2

∆ω±l/2

−ig0

[
Λ

0,0,±l/2
±l/2 + Λ

±l/2,0,0
±l/2

]
|A0|

2

−ig0

[
Λ
±l/2,l,l
±l/2 + Λ

l,l,±l/2
±l/2

]
|A+l|

2

−ig0

[
Λ
−l,−l,±l/2
±l/2 + Λ

±l/2,−l,−l
±l/2

]
|A−l|

2
}
δA±l/2

−ig0

{ [
Λ
∓l/2,0,±l
±l/2 + Λ

±l,0,∓l/2
±l/2

]
A∗0A±lei[− 1

2$∓l+
1
2 ($±B−$∓B)]t

+
[
Λ

0,∓l,∓l/2
±l/2 + Λ

∓l/2,∓l,0
±l/2

]
A0A

∗
∓le

i[ 1
2$±l+

1
2 ($±B−$∓B)]t

}
δA∓l/2

−ig0

{ [
Λ

0,±l/2,±l
±l/2 + Λ

±l,±l/2,0
±l/2

]
A0A±lei[$±B−

1
2$±l]t
}
δA∗±l/2

−ig0

{ [
Λ
∓l,∓l/2,±l
±l/2 + Λ

±l,∓l/2,∓l
±l/2

]
A∓lA±lei[ 1

2 ($±B+$∓B)−$±l]t

+Λ
0,∓l/2,0
±l/2 A2

0ei[ 1
2 ($±B+$∓B)]t

}
δA∗∓l/2

(14)

where

$±B = 2ω0 +
1
2
ω±l −

1
2
ω∓l − 2ω±l/2

$±l/2 = 2ω0 − ω∓l/2 − ω±l/2 =
1
2

($±B +$∓B) .(15)

The intermodal coupling coefficients Λ
αβµ
η converge to 1 in

our case, and explicit time dependence can be removed by

the introduction the variables

B0 = A0e−iσt,

B±l = A±le−i(σ+ 1
2$±l)t

δB±l/2 = δA±l/2e−i(σ+ 1
2$±B)t . (16)

Hence, Eq. (14) can be rewritten as

δḂ±l/2 =
{
−

1
2

∆ω±l/2 − i(σ +
1
2
$±B)

−ig0

[
Λ

0,0,±l/2
±l/2 + Λ

±l/2,0,0
±l/2

]
|B0|

2

−ig0

[
Λ
±l/2,l,l
±l/2 + Λ

l,l,±l/2
±l/2

]
|B+l|

2

−ig0

[
Λ
−l,−l,±l/2
±l/2 + Λ

±l/2,−l,−l
±l/2

]
|B−l|

2
}
δB±l/2

−
{
ig0

[
Λ

0,∓l,∓l/2
±l/2 + Λ

∓l/2,∓l,0
±l/2

]
B0B

∗
∓l

+ig0

[
Λ
∓l/2,0,±l
±l/2 + Λ

±l,0,∓l/2
±l/2

]
B∗0B±l

}
δB∓l/2

−
{
ig0

[
Λ

0,±l/2,±l
±l/2 + Λ

±l,±l/2,0
±l/2

]
B0B±l

}
δB∗±l/2

−
{
ig0

[
Λ
∓l,∓l/2,±l
±l/2 + Λ

±l,∓l/2,∓l
±l/2

]
B∓lB±l

+ig0Λ
0,∓l/2,0
±l/2 B2

0

}
δB∗∓l/2 (17)

which can be simply rewritten as

δḂ+l/2 = M+l/2δB+l/2 + N+l/2δB−l/2

+R+l/2δB
∗
+l/2 + P+l/2δB

∗
−l/2

δḂ−l/2 = M−l/2δB−l/2 + N−l/2δB+l/2

+R−l/2δB
∗
−l/2 + P−l/2δB

∗
+l/2 (18)

where the parameters M,R,N and P are complex. Since
Equation (18) is complex-valued, it can be split in real and
imaginary parts and after transform into the matricial form:

<[δḂ+l/2]
<[δḂ∗

−l/2]
=[δḂ+l/2]
=[δḂ∗

−l/2]

 = [K]


<[δB+l/2]
<[δB∗

−l/2]
=[δB+l/2]
=[δB∗

−l/2]

 . (19)

The sidemodes ±l/2 arise when at least one of the eigen-
values of the matrix [K] has a positive real value. This task
is indeed mathematically heavy because we have a fourth
order equation linear analysis problem, but exact analytical
stability conditions may be derived using for example the
Routh-Hurwitz criterion.

4. Conclusion

In conclusion, we have investigated the cascaded
threshold behavior observed during the formation of Kerr
optical frequency combs using monolithic whispering
gallery mode oscillators. We have mainly focused our
efforts on the secondary comb. Future work will focus on
the analysis of the full bifurcation behavior, as well as on
the comparison with experiments.
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