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Abstract—Inhibitory synapses regulate synchronous
firings, however, the analysis of the inhibitory coupled sys-
tem is not enough. In this paper we investigate inhibitory
coupled five and six Morris-Lecar neurons. This system
is an important motif to understand phenomena in a large-
scaled small-world network. In this system, we observe all
possible cluster synchronizations except for the complete
in-phase synchronization. Also, their bifurcations are stud-
ied.

1. Introduction

Recently, complex network structures, such as small-
world [1] and scale-free [2, 3], have been found in vari-
ous real neuronal networks [4–6]. Synchronization in neu-
ronal networks is also found and it is considered that syn-
chronous activities play an important role in information
processing in the brain [7–9]. On the other hand, they
are not desirable for several neurological diseases such as
epilepsy and tremor in Parkinson’s disease [10, 11]. Thus
the studies of synchronization in complex networks are
very important and have attracted much interest. Barahona
and Pecora developed the MSF(Master Stability Function)
analysis to study synchronizability in complex networks
[12], and Nishikawa and Motter extended it for an asym-
metric case [13]. In small-world networks the average path
length becomes short, thus it is considered that synchro-
nization is easier achieved than in a regular lattice [14–17].
However, it is not the only condition, synchronizability also
depends on a network size, the degree distribution (distri-
bution of a number of links), the clustering coefficient and
so on [18–21].

In a previous paper we investigated synchronization in
neuronal networks with small-world structure [22]. In-
hibitory connected 24 neurons were considered. Inhibitory
synapses are considered to regulate synchronous firings
[23]. We found many cluster phase synchronizations.
However, clustered states corresponding to non-periodic
solutions coexist and which one is observed depends on
initial states. In this paper, we consider smaller systems
(numbers of coupled neurons (n) are five and six). All
possible clustered states except for complete in-phase so-
lutions are observed by changing the value of a coupling
coefficient and some states coexist inn = 5. Studying such
a piece of complex networks called “network motifs” [24]
is fundamental to understand phenomena in whole complex

networks.

2. System Equation

In this paper we consider a system of synaptically cou-
pled Morris-Lecar (ML) neurons [25]. The ML neuron
model was proposed as a model for describing a variety of
oscillatory voltage patterns of Barnacle muscle fibers. The
system equation for synaptically coupled ML neurons with
two nearest neighbors is described by

C
dVi

dt
= −gL(Vi − VL) − gCa M∞i (Vi − VCa)

−gKNi(Vi − VK) + Iext + Isyni

dNi

dt
=

N∞i − Ni

τNi

(1)

dsi

dt
=

1− si

1+ exp(−Vi)

(

1
τr
−

1
τd

)

−

si

τd

(i = 1, · · · , 5or6),

whereVi is the membrane potential,Ni ∈ [0, 1] is the ac-
tivation variable for K+, Iext is the external current andt
denotes the time measured in milliseconds. The system pa-
rametersVCa, VK andVL represent equilibrium potentials
of Ca2+, K+ and leakage currents, respectively, andgCa,
gK andgL denote the maximum conductance of the corre-
sponding ionic currents. The functions ofVi, M∞i , N∞i and
τNi are given by

M∞i = 0.5[1+ tanh (Vi − Va)/Vb],

N∞i = 0.5[1+ tanh (Vi − Vc)/Vd], (2)

τNi = 1.0/[φ cosh (Vi − Vc)/(2Vd)],

whereVa andVc are the midpoint potentials at which the
calcium current and the potassium current is halfactivated,
Vb is a constant corresponding to the steepness of volt-
age dependence of activation,Vd denotes the slope factor
of potassium activation andφ is the temperature-like time
scale factor. In Eq. (1),si, τr andτd are the gating variable
for the synapse, the raise and the decay time of the synapse,
respectively, andIsyni is the synaptic current given by

Isyni = (Vsyn − Vi)
n

∑

j=1, j,i

gsyni j s j (3)
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Figure 1: Two-parameter bifurcation diagram. In each col-
ored or hatched region we observe indicated cluster syn-
chronization. Numbers connected by hyphens indicate of
neurons with simultaneous firings. All curves indicate
pitchfork bifurcation sets except for the curve indicated by
PD (period-doubling bifurcation sets).

wheregsyni j is the maximum synaptic conductance between
neuronsi and j, andVsyn is the reversal potential. Here, we
consider two-way coupling (gsyni j = gsyn ji) and two-nearest
neighbors coupling (gsyni j = 0 if i-th and j-th neurons are
not two-nearest neighbors). We define the threshold value
for firing is Vi = 0. The values of (τr, τd, Vsyn) are fixed
as (0.5, 7.0 -60.0) for the inhibitory synapse [26]. The val-
ues of the other parameters in the ML neuron are fixed as
follows:

C = 20 [µF/cm2], gK = 8 [mS/cm2],
gL = 2 [mS/cm2], gCa = 4 [mS/cm2],
φ = 1/15 [sec−1], VCa = 120 [mV],

VK = −80 [mV], VL = −60 [mV],
Va = −1.2 [mV], Vb = 18 [mV],
Vd = 17.4 [mV].

3. Results

3.1. n = 5

The values of all synaptic conductances are the same
(gsyni j = gsyn) in n = 5. We obtain bifurcation sets on
the parameter plane (gsyn, Iext) using Kawakami’s method
[27]. Figure 1 shows a two-parameter bifurcation diagram.
Numbers in the figure are of clustered neurons with syn-
chronous firing. Figure 2 shows an enlarged diagram of
Fig. 1.

Increasing the value ofgsyn from 1.0 we observe several
cluster synchronizations:3-2, 2-2-1, 2-1-1-1, 1-1-1-1-1, 4-1
and 3-1-1, where numbers connected by hyphens indicate
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Figure 2: Enlarged diagram of Fig. 1. All curves indicate
pitchfork bifurcation sets except for the curve indicated by
G (tangent bifurcation sets).

of neurons with simultaneous firings. Moreover, some re-
gions are overlapped. All possible clustered states except
for a complete in-phase solution are observed. Boundaries
of parameter regions in which stable clustered states are
formed by mainly pitchfork bifurcation sets except for one
period-doubling bifurcation set and one tangent bifurcation
set. Roughly speaking, which clustered state is observed
stably depends on mainly the value of the synaptic conduc-
tance (or coupling strength) rather than the external current
(controlling the firing frequency).

The waveforms of typical clustered states are shown in
Fig. 3. They are classified into two types: suppressed by
fired neurons (e.g. green and black ones in Fig. 3(c)) and
non-suppression (e.g. red one in (c)).

On the boundary of 1-1-1-1-1 and 3-1-1 shown by the
green curve in Figs. 1 and 2. the supercritical pitchfork
bifurcation occurs and in-phase three membrane potentials
bifurcate to non-in-phase three potentials. Two characteris-
tic multipliers become one at this bifurcation point. Thus,
this pitchfork bifurcation is degenerate by the symmetri-
cal property (the system equation is invariant under inter-
change of any two neurons). Comparing Fig. 3(b) with 3(c)
we can see that the red waveform in Fig. 3(c) (three wave-
forms are overlapped) bifurcates to three distinct wave-
forms shown in Fig. 3(b) (purple, solid black and dashed
black waveforms). All other pitchfork bifurcations are sub-
critical.

3.2. n = 6

In the previous study [22], we reported interesting non-
periodic clustered states inn = 24. Even inn = 6 we
observe a similar phenomenon. We consider rewiring one
connection (gsyn12 becomes zero andgsyn14 is not zero). Fig-
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(a) 2-1-1-1 clustered state atgsyn = 2.72.
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(b) 1-1-1-1-1 clustered state atgsyn = 2.8.
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(c) 3-1-1 clustered state atgsyn = 3.0.
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(d) 4-1 clustered state atgsyn = 4.0.

Figure 3: Waveforms of membrane potentials whereIext = 78.55. Cyan, red and blue curves indicate four, three and two
in-phase waveforms, respectively. Other colors are for oneneuron.
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Figure 4: Waveforms of the membrane potentials without
periodicity inn = 6, gsyn12 = 0 andgsyn14 =3.0.

ure 4 shows waveforms ofVi. V1 andV5 are synchronized
at almost anti-phase, andV3, V4 andV6 are in-phase sub-
threshold oscillations.V2 is not suppressed by other neu-
rons, thus the firing rate betweenV1 andV2 is irrational.

By numerical bifurcation analysis we find a similar pe-
riodic solution. Figure 5 shows waveforms of this periodic
solution. In this caseV3 and V6 are in-phase subthresh-
old oscillations.V1 andV2, andV4 andV5 have 1:1 firing,
howeverV1 and V4 have 2:1 firing. After disappearance
of this periodic solution due to the tangent bifurcation, the
non-periodic clustered state as shown in Fig. 4 appears.

4. Conclusion

We investigated a system of inhibitory coupled ML neu-
rons in n (number of coupled neurons)= 5 and 6. This
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Figure 5: Waveforms of the membrane potentials inn = 6,
gsyn12 = 0 and gsyn14 =1.1. These waveforms are two-
periodic, because considering the point ofV1 = 0 and
dV1/dt > 0 same waveforms are repeated at every two
points.

model is minimal realization of a system of coupled two
nearest neighbors which is the basis for the small-world
network, because usually we construct the small-world net-
work from the two-nearest-neighbors coupling system by
changing connections with some probability.

By changing the value of the maximum synaptic conduc-
tance, we observed all possible cluster synchronizations ex-
cept for complete in-phase synchronization inn = 5. When
n = 6, we observed the same kind of complicated cluster
synchronization as that inn = 24. By numerical bifurcation
analysis, we clarified the transition between this synchro-
nized state and the same type of the periodic solution. To
confirm the universality of this transition is one of our open
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problems.
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