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Abstract—We propose an adaptive modification of the
delayed feedback control (DFC) method that automatically
finds the optimal feedback gain of the DFC systems. The
system under control is perturbed by a Gaussian white
noise with a low amplitude, and the variance of the delayed
difference is estimated by a simple integrator. The problem
of minimization of the variance is substituted by a mini-
mization of some quantity that represents a generalization
of the Lyapunov exponent in the presence of noise. The
generalization is derived by considering a simple Langevin
equation. The numerical simulations for the controlled
Rössler system show that the adaptively obtained optimal
feedback gains are in good quantitative agreement with the
corresponding exact values.

1. Introduction

Although delayed feedback control algorithm has been
introduced two decades ago [1] it is still one of the most ac-
tive fields in applied nonlinear science [2]. This algorithm
provides a simple, robust, and efficient tool for stabilization
of unstable periodic orbits (UPOs) in nonlinear dynamical
systems. The control signal in the DFC algorithm is formed
from a difference between the current state of the system
and the state of the system delayed by one period of a target
orbit. Such control signal allows one to treat the controlled
system as a black box; it does not require any exact knowl-
edge of either the form of the periodic orbit or the system’s
equations. The method is asymptotically noninvasive be-
cause the control force vanishes whenever the target UPO
is reached. The DFC algorithm has been successfully im-
plemented in quite diverse experimental systems from dif-
ferent fields of science. Some details of experimental im-
plementations as well as various modifications of the DFC
algorithm can be found in the review paper [3].

One of the relevant issues in the application of the DFC
method is the search for the delay time, which should be
equal to the period of actual UPO. This problem was solved
by using e.g. the gradient descent method (see [4] and ref-
erences therein). Here we consider an another problem:
the adaptive search for the optimal value of the feedback
gain in the presence of noise. For the noiseless systems the
optimal feedback gain corresponds to the minimum of the
leading Lyapunov exponent (LE). However, in the presence

of noise, the LEs are not available. In this case one can in-
voke the minimization of the variance of the delayed differ-
ence. It appears that the variance of the delayed difference
is an unappropriate parameter since it has a flat minimum
and singularities at the boundaries of stability. Instead of
the variance we introduce a new quantity that preserves the
same minimum but has more appropriate properties for the
construction of the adaptive algorithm.

The noise plays a crucial role in our algorithm. Without
noise, the variance of delayed difference is exactly zero in
the stable range of feedback gain. There is a flat minimum
present, and one has nothing to optimize. In contrast, in the
presence of noise, the final variance of delayed difference
(after successful stabilization) is non-zero, and it is less for
better feedback gains, and larger for the worse values of
them. There exists an optimal value of feedback gain that
minimizes the amplitude of control signal.

It is noteworthy that in [5, 6, 7] there has been substan-
tially studied the role of noise in the coupled logistic maps
controlled by generalized DFC schemes. In these analy-
sis there was suggested a criterion for estimating the noise
level that can be tolerated by the given controller. It was
also shown that the DFC controller equivalent to standard
optimal controller can be equally robust in the presence of
noise, and that the NDFC controller tends to be less sensi-
tive to noise than the extended DFC (EDFC).

In [8] there has been proposed an adaptive algorithm for
tuning of feedback gain in DFC systems. This algorithm
is based on the speed-gradient method that enables to min-
imize the goal function defined as a squared delayed dif-
ference. Beginning from a zero initial value the variable
feedback gain converges towards an appropriate value lying
inside of the stability range. The final value of the feedback
gain depends on the initial conditions of the system and on
the adaptation gain. The modification is able to stabilize
the target even if the stability interval is unknown.

In [9] it was also demonstrated the efficiency of the
speed-gradient method for adaptive synchronization in
delayed-coupled networks of Stuart-Landau oscillators. By
proper choice of the coupling phase one can switch be-
tween different synchronous oscillatory states of the net-
work. The authors have proposed goal functions based e.g.
on a generalized order parameter and demonstrated that the
speed-gradient method allows one to find appropriate cou-
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pling phases with which different states of synchronization
can be selected.

We should also mention that in [10] an adaptive algo-
rithm was proposed for locating unknown steady states.
This technique includes both dynamical estimators and
coupling gains. The authors wrote down the dynamic equa-
tion for the feedback gain whose r.h.s. consists of the
squares of the estimated difference for each system vari-
able. In this method the growth of feedback gain is un-
bounded. Therefore the result does not converge to the op-
timal value of feedback gain.

An analogous adaptive rule was applied in [11] where
the problem of stabilization of the UPOs by DFC method
was solved. In this case the both DFC parameters (delay
and feedback gain) were found adaptively by additional dy-
namic equations. The r.h.s. of the equation for the feedback
gain consists of the squared delayed difference. This rule
causes the unbounded growth of the feedback gain, and, as
a result, the period of the target orbit is found only approx-
imately.

2. The Idea of Algorithm

In order to illustrate our idea, first consider a simple
Langevin equation

ẋ = −γx + ξ(t), (1)

that describes the dynamics of a stable fixed point subjected
to noise. Here −γ is the eigenvalue of the fixed point (the
Lyapunov exponent), and ξ(t) is the white Gaussian noise
satisfying

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = ε2δ(t − t′). (2)

where ⟨⟩ denotes the averaging over ensemble, and ε is the
strength of the noise. Our aim is to find the asymptotic
value of the variance ⟨x2⟩. Solving the Eq.(1) by variation
of constant one gets

⟨x2(t)⟩ = ⟨x2
0⟩e−2γt +

ε2

2γ
− ε

2

2γ
e−2γt. (3)

Here ⟨x2
0⟩ denotes the averaging over initial values of x2(0).

For t → ∞ the asymptotics reads:

⟨x2(t)⟩t→∞ = ε2/2γ. (4)

Thus the eigenvalue of the fixed point can be determined
from the variance as follows

−γ = −ε2/2⟨x2(t)⟩t→∞. (5)

Below we utilize this expression to introduce a convenient
quantity for the optimization of the DFC algorithm.

Now consider the DFC controlled dynamical system in
the presence of noise:

Ẋ(t) = F[X(t), k∆s(t)] + ξ(t). (6)

The first argument in the function F shows the dependence
of the vector field on internal degrees of freedom, while
the second argument denotes the dependence on control
force k∆s(t). Here k is the feedback gain, and the de-
layed difference is defined as ∆s(t) = s(t) − s(t − τ) =
g[X(t)] − g[X(t − τ)]. Here s(t) = g[X(t)] is a measur-
able scalar signal that is a function of all the variables.
ξ(t) ≡ {ξα(t)} is a vector of Gaussian white noise satisfy-
ing ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξ j(t′)⟩ = ε2δi jδ(t − t′). The free
system (k = 0, ε = 0) has an unstable periodic solution
X(t) = η(t) = η(t−T ) that we intend to stabilize by control
perturbation k∆s(t). Our aim is to find the optimal value
of the feedback gain kop that corresponds to the minimal
asymptotic variance of the delayed difference.

Denoting the variance of delayed difference as D2 =

⟨[s(t) − s(t − τ)]2⟩ we introduce a quantity

L = −ε2/2D2, (7)

which is analogous to the above definition of the Lyapunov
exponent of the fixed point [cf. Eq.(5)]. Although we now
deal with the periodic orbit rather than the fixed point we
can still imagine that L is a good characteristic of the Lya-
punov exponent of the stabilized UPO. Subsequently, we
reformulate our aim as follows. Now we will seek such a
value of the feedback gain kop that corresponds to the min-
imum of quantity L. We have made such a change because
the shape of the function L = L(k) is much more conve-
nient for optimization than for D2 = D2(k), whereas the
minimum remains at the same value kop.

Now we outline our algorithm for iterative search of the
optimal feedback gain. Suppose, we know the boundaries
of stability of the controlled orbit, and denote them as k ∈
(kmin, kmax). Let us assume that we start from the value of
k = k0 that lies near the kmax. We choose an appropriate
positive constant β, and construct a sequence of feedback
gains:

kN = k0, kN−1 = k0 − β, ..., k1 = k0 − (N − 1)β. (8)

We integrate numerically the system (6) together with the
following equation:

ẇ = αsw[s(t) − s(t − τ)]2. (9)

Here the parameter αsw is used to turn on the procedure
of integration (we set α = 0 for t ≤ tend − Tα and α = 1
otherwise).

We set w(0) = 0, and thus the quantity w(tend)/Tα will
yield the averaged variance of the delayed difference, i.e.

w(tend)/Tα ≃ ⟨[s(t) − s(t − τ)]2⟩. (10)

Note that tend (the end of numerical integration), and Tα
(determining the moment at which we begin to integrate the
equation (9)) must be large enough in order to get adequate
values of w(tend) which would satisfy (10).
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We thus may redefine the quantity L as

L(k) = − ε
2Tα

2w(tend)
. (11)

This definition is obtained by substituting D2 → w(tend)/Tα
in (7).

We then integrate the system (6) until tend for each value
of {k1, ..., kN} from (8) and compute the corresponding val-
ues of w(tend) thus obtaining the sequence

wN , wN−1, ...,w1. (12)

Here the upper indices of wn numerate the final values of
w for corresponding values of kn, and we have omitted the
argument (tend). Afterwards, using (11) we compute the
sequence

LN , LN−1, ..., L1. (13)

We now fit the obtained points {kn, Ln} by using the least
squares method (LSM). This method yields the coefficients
(S 0, S 1, S 2) of parabola L = S 0 + S 1k + S 2k2 that approx-
imates the obtained sequence. The minima of parabola is
given simply by

kop = −S 1/2S 2. (14)

After that we construct the new sequence of feedback gains
(note that N must be an odd number):

kop−β(N−1)/2, kop−β(N−1)/2+β, ..., kop+β(N−1)/2.
(15)

For each feedback gain of this sequence we compute the
values of Ln thus obtaining again (13).

Given the sequence {kn, Ln}, we compute the parameters
(S 0, S 1, S 2) again, and find the new optimal kop as given by
(14).

By repeating the above procedure, we get the dynamics
of kop that should converge towards the exact optimal value.

Note that we can use quadratic approximation of L =
L(k) for simple systems, whereas for more complicated
cases we use the cubic parabola.

3. Controlling the Rössler System

As an illustrative example consider the DFC controlled
Rössler system under the noise (its free version was intro-
duced in [12]):

ẋ = −y − z + ξx(t), (16)
ẏ = x + ay − k[y(t) − y(t − τ)] + ξy(t), (17)
ż = b + z(x − c) + ξz(t). (18)

Here a = b = 0.2 and c = 5.7 are the system parame-
ters, k[y(t) − y(t − τ)] is the feedback perturbation, and k
is the feedback gain. The vector ξ(t) = [ξx(t), ξy(t), ξz(t)]
represents the noise perturbations that satisfy ⟨ξα(t)⟩ = 0,
⟨ξα(t)ξα′(t′)⟩ = ε2δ(t − t′) in which α, α′ = x, y, z.

The system parameters are chosen such as to get a
chaotic behavior in the absence of noise and feedback per-
turbation (for ε = 0 and k = 0). Our aim is to stabilize the
period-1 UPO (with period T1 = 5.88105) of the Rössler
system and to find the optimal feedback gain kop.

3.1. Adaptive Search for the Optimal Feedback Gain in
the Controlled Rössler System

In Sec.2 we have described the iterative procedure for
finding the optimal feedback gain in the general case. Here
we use the same procedure to a specific case, namely, to
the Rössler system. In Sec.2 we have adopted the fitting of
a quadratic parabola for the sequence {kn, Ln} whereas for
the Rössler system we use the fitting of the cubic parabola.

Let us discuss the procedure for finding the quantity L
that depends on k. We integrate numerically the system
(16,17,18) together with equation (9) with s(t) = y(t).

We set w(0) = 0, and thus the quantity w(tend)/Tα will
again yield the averaged variance of the delayed difference,
i.e.

w(tend)/Tα ≃ ⟨[y(t) − y(t − τ)]2⟩. (19)

The quantity L is defined by equation (11).
Hence, given the sequence {kn, Ln}, we approximate

these points by a cubic parabola L = S 0+S 1k+S 2k2+S 3k3.
The LSM yields the coefficients (S 0, S 1, S 2, S 3). We then
need one of two extremes of this parabola, namely, the min-
imum. The first derivative of the cubic parabola is zero at

k± = [−S 2 ± (S 2
2 − 3S 3S 1)1/2]/3S 3. (20)

In our case, the necessary minimum corresponds to the k+,
and we thus get the optimal feedback gain as

kop = k+ = [−S 2 + (S 2
2 − 3S 3S 1)1/2]/3S 3, (21)

whereas k− corresponds to the left maximum which is out-
side of the stability domain.

By using this algorithm we obtain the iterated dynam-
ics of optimal feedback gain kop which should converge
towards the exact minimum of L = L(k).

If we dealt with some linear maps, we would obtain
the dependencies L = L(k) analytically. However, for the
controlled Rössler system, we have encountered a more
complicated situation. Since the analytic dependence of
L = L(k) is not available now, we do not have any analytic
exact value of the optimal feedback gain. However, the
iterations of optimal feedback gain have revealed that the
variance of the obtained values in respect to their average
is relatively small, i.e. the obtained points are located in a
close neighborhood to the average.

4. Conclusions

We have proposed an adaptive modification of the de-
layed feedback control algorithm that enables the controller
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to automatically find the optimal feedback gain of the DFC
systems.

This modification uses the quantity L that depends on the
feedback gain. The minimum of this quantity corresponds
to the optimal case when the variance of the delayed differ-
ence is minimal. The expression of the quantity L is based
on the considerations of the simplest case, the Langevin
equation (1), where it has the meaning of the eigenvalue of
the steady state.

One may also remember the recent adaptive algorithm
[4] for finding the delay time which should be equal to the
exact period of the target orbit. In that case we did not
need to involve any noise since the incorrect delays (non-
equal to the exact periods) produced the variance of the
delayed difference with resonant minima at the exact peri-
ods. Therefore we conclude that the problem of search for
optimal feedback gain is much more complicated than that
of the delay.
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[2] E. Schöll and H. G. Shuster, Handbook of Chaos Con-
trol, (Wiley-VCH, Weinheim), 2008.

[3] K. Pyragas, “Delayed feedback control of chaos,” Phi-
los. Trans. R. Soc. London, Ser. A, vol.364, pp.2309-
2334, 2006.

[4] V. Pyragas, K. Pyragas, “Adaptive modification of
the delayed feedback control algorithm with a con-
tinuously varying time delay,” Phys. Lett. A, vol.375,
pp.3866-3871, 2011.

[5] D. A. Egolf, J. E. S. Socolar, “Failure of linear control
in noisy coupled map lattices,” Phys. Rev. E, vol.57 (5),
pp.5271–5275, 1998.

[6] J. E. S. Socolar and D. J. Gauthier, “Analysis and com-
parison of multiple-delay schemes for controlling un-
stable fixed points of discrete maps,” Phys. Rev. E,
vol.57 (6), pp.6589–6595, 1998.

[7] I. Harrington and J. E. S. Socolar, “Design and robust-
ness of delayed feedback controllers for discrete sys-
tems,” Phys. Rev. E, vol.69, p.056207, 2004.

[8] J. Lehnert, P. Hoevel, V. Flunkert, A. L. Fradkov, and
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