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Abstract—The natural measure of a chaotic attractor
describes many statistical properties of the system. It is
well known that the natural measure is related to the unsta-
ble periodic orbits in the attractor. Here, we investigate the
natural measure of simple delayed maps. We argue that for
large delay there are two types of unstable periodic orbits
that need to be considered: (i) periodic orbits with periods
much smaller than the delay and (ii) periodic orbits with
periods close to multiples of the delay time. In a space
time representation of the dynamics the latter orbits corre-
spond to unstable pulse-like solutions. Our results suggest
that in the limit of large delay times, the natural measure
converges in the sense of the spatio-temporal interpretation
of the delay system.

1. Introduction

Dynamical systems with delays occure in a many differ-
ent scientific fields, such as biology, physics, engineering,
or socio-economics [1]. In a delayed system the evolution
of the system does not only depend on the present state of
the system, but also on the history. In the simplest case the
state variables X(t) evolve as

Ẋ(t) = F[X(t), X(t − τ)] , (1)

where τ is a discrete delay.
Delayed systems have a vast range of applications in par-

ticular in engineering. Many systems with self-feedback
can modeled by equations of the form of Eq. (1). Exam-
ples of such systems are optical and optoelectronic systems
[2, ?, 3, 4, 5], or biological processes [6].

Instead of a delay differential equation with a continuous
time one can also study the discrete time case of a delayed
map

x(t) = f [x(t − 1), x(t − τ)] (x ∈ Rn) , (2)

where t ∈ Z is the discrete time and τ ∈ N is the value of
the delay. Delayed maps and delay differential equations
share have many similarities [7]. In particular, Eq. (1) can
always be approximated by Eq. (2) as is usually done in the
numerical simulation.

Systems with delayed self-feedback, such as Eqs. (1)
and (2) usually become chaotic for large values of the de-
lay time. In chaotic regime, many characteristic properties
of chaotic attractor are then independent of the value of

the delay [8, 9] τ, when τ is large enough. For instance,
the Kolmogorov- Sinai entropy converges to a constant for
τ → ∞. On the other hand other properties scale propor-
tionally to τ. The dimensionality of the attractor, for in-
stance, grows linearly with τ.

In this work we aim to understand generic aspects of
Eq. (2) by studying unstable periodic solutions in these sys-
tems.

In particular, we show that there are two important
classes of periodic orbits in a delayed system with large
delay: (i) periodic orbits with small period that repeat as
the delay is increased and (ii) periodic orbits with a period
close to the delay time. The later type of orbits are pulse
like solutions. The pulse like orbits are in a chaotic system
unstable, but may be stable in other dynamical

Further, we discussing the role of these orbits for the nat-
ural measure of the chaotic system. This discussion is so
only intuitive and not rigorous. Nevertheless, we believe
that it could be a valuable approach for further investiga-
tions.

2. Analysis

We consider the delayed map of Eq. (2) for simplicity in
one dimension, i.e., x(t) ∈ R:

x(t) = f [x(t − 1), x(t − τ)] , (3)

where t ∈ Z is the discrete time and τ ∈ N is the value of
the delay.

Natural measure — Consider a chaotic d-dimensional
map

Y(t + 1) = M [Y(t)] (4)

Y(t) ∈ Rd. Grebogi, Ott, and Yorke showed in their semi-
nal paper [10] that if the map M is hyperbolic, the natural
measure of a set S can be expressed as

µ(S ) = lim
p→∞

∑
Yp( j)∈S

1

Lu

(
Yp( j)

) . (5)

Here, Yp( j) is the j-th fixed point of the p times iterated
map Mp, i.e., the sum goes over all periodic orbits with
period p or factors of p. The term Lu is given by

Lu = |λ1 · λ2 · · · λn| , (6)
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where λi are the unstable eigenvalues (|λi| > 1) of the Jaco-
bian DMp(Yp( j)). Although Eq. (5) has only been proved
for hyperbolic maps, strong evidence [11, 12] have been
presented that support the validity of Eq. (5) for many sys-
tems also in the non-hyperbolic case. In the following, we
assume that Eq. (5) holds for our delayed map (3).

We can consider the delayed system Eq. (3) as a map M
acting on the τ dimensional state space Iτ (with xk ∈ I) cor-
responding to the state vectors Y(t) = (Y1(t), . . . ,Yτ(t)) :=
(x(t − 1), . . . , x(t − τ)) . It is straight forward to find the
action of (3) on Y(t).

Consider now a T -periodic orbit of Eq. (3). A Floquet
multiplier z of this orbit then corresponds to the eigen-
value of the Jacobian of the T -times iterated map MT eval-
uated on any point of the orbit. Similarly, for p = r T
(r ∈ 1, 2, . . .), the eigenvalues of DMp correspond to zr.

Periodic orbits with small periods — For a T -periodic
orbit of the delayed map (3), the variational equation is
given by

ξ(t) = A(t)ξ(t − 1) + B(t)ξ(t − τ) , (7)

where A(t) and B(t) are T -periodic Jacobian matrices.
Making a Floquet-like ansatz ξ(t) = ztq(t), where q(t) is
T -periodic, yields

zq(t) = A(t)q(t − 1) + z−τB(t)q(t − τ) . (8)

We consider the case of large delay and small period (T ≪
τ). In this case it follows [13], that the solutions z are given
by isolated strongly unstable solutions ẑk independent of τ
and by branches zi =

(
1 + δ(ωi)/τ

)
eiωi , where δ(ω) is the

curve on which the solutions lie. The allowed values ωi are
spaced as

ωi+1 − ωi = 2π/τ + O(1/τ2) . (9)

The weight of an orbit — We now calculate the factor
Lu(Yp( j)) for a periodic orbit with period T = p ≪ τ.
Consider first the case, when all eigenvalues lie on a sin-
gle branch δ(ω). Taking the logarithm of Lu(Yp( j)) gives
ln Lu(Yp( j)) =

∑
|zi |>1 ln |zi|, where the sum goes over all un-

stable eigenvalues. Using the frequency spacing Eq. (9),
we can express the sum as an integral over frequencies
ω ∈ W+, where W+ = {ω | δ(ω) > 0}. Thus we find for
large delays

ln Lu(Yp( j)) ≈
∑
|zi |>1

∆ω

∆ω
ln |1 + δ(ωi)/τ|

≈ 1
2π

∫
W+

dωδ(ω) ,

which gives

Lu(Yp( j)) ≈ exp
[

1
2π

∫
W+

dωδ(ω)
]
. (10)

The case of multiple branches (for δk(ω) and strongly un-
stable solutions Λi can be handled similarly.

The main result from this analysis is that for a given or-
der p in Eq. (5), in the limit of large delay times the weight
of each periodic orbit is independent of τ.

3. Pulse like periodic orbits

Apart from the periodic orbits with periods small com-
pared with the delay time, there typically exist periodic or-
bits whose periods are close to multiples of the delay time
(T = k · τ + ∆, with small |∆|). As we will discuss below,
these orbits occur for large delay and are pulse-like solu-
tions. Consider again the delayed map Eq. (3). We cast the
delayed map into a space-time representation

xk(t) = f [xk(t − 1), xk−1(t)] , (11)

where k ∈ N is the time-like coordinate and t ∈ {1, . . . , τ}
is the space-like coordinate. The feature of the delay come
in through the particular boundaries conditions xk(t − τ) =
xk−1(t). For large delay one may expect that the particular
boundary conditions can be neglected at least for certain
solutions.

Let us thus consider the dynamics induced by Eq. (11)
on the whole axis t ∈ Z. We look for travelling pulse like
solutions that have an invariant shape. These solutions thus
obey

xk(t) = Y(t − k∆) , (12)

where ∆ corresponds to the speed of the pulse. General
solutions of this form will not necessarily be solutions of
the delayed equation due to the different boundary condi-
tion. However, localized solutions, will be approximate
solutions of the delay equation for large delay, since the
boundary conditions are almost satisfied due to the local-
ization.

Substituting Eq. (12) in (11) gives an advanced-delay
equation

Y(t) = f [Y(t − 1), Y(t + ∆)] . (13)

A homoclinic solution to a fixed point x∗ of this equation
would give the pulse solution of the original system in the
limit τ → ∞. As we numerically demonstrate below, a ho-
moclinic solution is accompanied by many periodic orbits
close to the homoclinic solution. Such a periodic solution
with a period T , corresponds to a pulse like solutions of
our original system with delay τ = T + ∆. Of course not
for all ∆ a solution must exist. Note that the occurrence
of these orbits close to the homoclinic solution is the same
phenomenon as in partial differential equations, for which
periodic travelling waves with large spatial period appear
in a similar manner [14].

The pulse solutions have a period T = τ + ∆ close to
the value of the delay. Similarly, there may exist solutions
with a period T = nτ + ∆ close to multiples nτ of the delay
(n ∈ N). These solutions correspond to localized profiles
that repeat after n iterations shifted by ∆, i.e., xk+n(t) =
xk(t − ∆). In the intermediate iterations the profile does not
match previous profiles.

For our numerical investigations, we consider a delayed
map of the following type

x(t) = ϵ f (x(t − 1)) + (1 − ϵ) f (x(t − τ)) , (14)
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Figure 1: Panel (a): Exemplary unstable pulse solutions
for different values of ∆. Panel (b): Decay rate α of front
of pulse solutions vs. speed ∆. Parameters: ϵ = 0.12, r =
3.95.

with ϵ ∈ [0, 1]. As the local map we have investigated
the logistic map, the Bernoulli map and the tent map. The
results are similar and we thus limit the discussion to the
tent map f (x) = r min{x, 1 − x}. To find the pulse solu-
tions with speed ∆ and iteration number n = 1 for a sys-
tem with delay τ numerically, we solve Eq. (13) on a lat-
tice of size T = τ + ∆ with periodic boundary conditions
using the Newton-Raphson method. As an initial condi-
tion we take the (non-zero) fixed point of the logistic map
x(t) = x∗ and perturb this homogeneous steady state at one
or more lattice sites. In our numerical experiments this ini-
tial condition converges with a high probability to a one-
or multi-pulse solution. We find pulse solutions for n > 1
numerically in a similar way by considering a lattice of size
T = nτ + ∆ with periodic boundary conditions.

Fig. 1a shows the pulse shapes for different values of
∆ and n. All pulses we found have a front in the direc-
tion of propagation that decays exponentially towards the
fixed point value x∗ and a back with a sharp transition to
the steady state value x∗. The exponential decay rate α of
the front of the pulse depends on the speed of the pulse.
Pulses with large speeds (large values of |∆|) have a slower
decay and are thus wider. This is depicted in Fig. 1b, where
the decay rate α of the pulse front is plotted as a function
of ∆.

Figure 2 shows the dynamics of the delayed system
with the history initialized to pulse solutions with different
speeds ∆ and iteration numbers n.

Pulses with negative values of ∆ are not induced through
causal relation to the state at x(t − τ). These pulses have
more of a phase wave nature and can never be stable. Nev-
ertheless, they contribute to the properties of the dynamical
system.

By perturbing more than one lattice sites of the initial
condition, leads to multi pulse solutions. These solutions
are similar to multi-bump pulses in spatially extended sys-
tems.

Stability — To numerically calculate the stability of the
pulse solutions, we cast the delayed system into the form
of Eq. (4) and calculate the monodromy matrix as the prod-
uct of Jacobians along the orbit. The eigenvalues of Mon-
odromy matrix then correspond to the Floquet multipliers z

0

30

60

∆ = 1
n = 1

∆ = 2
n = 1

∆ = 3
n = 1

0

30

60

∆ = −1
n = 1

∆ = −2
n = 1

∆ = −3
n = 1

0 40 80
0

30

60

∆ = 1
n = 3

0 40 80

∆ = 2
n = 3

0 40 80

∆ = −1
n = 4

Figure 2: Exemplary space time plots of the delayed dy-
namics Eq. (14) for initial conditions corresponding to
pulse solutions with speed ∆ and iteration number n. The
plots show 60 iterations of the initial history. Color scale:
0 to 1 ≜ dark to light. Parameters: τ = 81, ϵ = 0.12,
r = 3.95.

in Eq. (8).
From the numerical calculations we have made the fol-

lowing observations for the pulse solutions, when the de-
lay time is large: (i) The eigenvalues lie in the complex
plane and on a closed curve almost equidistantly spaced
outside the unit circle. (ii) The number of eigenvalues on
the curve is given (of course) by the period T = τ + ∆. The
curve on which the solutions lie, however, is independent
of τ if τ is large enough. (iii) For multi-pulse solutions the
eigenvalue curve is almost the same, even if there are many
pulses closely packed over the whole period T . (iv) For
∆ = ±1,±2,±3, . . . the eigenvalue curve has 1, 2, 3 loops
outside the unit circle. Additional loops lie further away
from the origin and thus orbits with large |∆| are more un-
stable.

4. Discussion

Based on our numerical analysis and the analytic ap-
proaches above, we conjecture the following for the chaotic
map with large delay:

The invariant measure is concentrated on two sets of pe-
riodic orbits (these sets of orbits contribute most to the
measure): (i) periodic orbits with small periods T ≪ τ,
and (ii) pulse like orbits with periods close to a multiple of
the delay T = nτ + ∆.

We have shown that the weights of the orbits from the
first set remains the same when τ is increased. For the sec-
ond set of orbits, each individual orbit becomes more un-
stable when τ is increased, however, the number of periodic
orbits in this set also increases with increasing τ: there is a
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Figure 3: Joint probability distributions for different com-
bination of variables and different values of the delay time.
The color code and contour lines indicate the height of
the joint probability distribution (in logarithmic scale) and
show very characteristic fingerprints of the dynamics.

longer domain to fit in more pulses. In fact, to estimate the
number of pulses, let us assume that we can stack pulses
together with just one site distance between them. Then
can then estimate the number of pulse solutions by

N =
τ∑

n=1

1
n!τ

n−1∏
l=0

(τ − l) =
2τ − 1
τ
. (15)

Here, the term under the sum is the number of n-pulse solu-
tions accounting for the fact that all pulses are identical and
eliminating the symmetry due to shifting the entire history.
We conjecture that the increasing number of orbits of this
type matches the decreasing weight that each orbit has.

Our conjecture is motivated by the following observa-
tion: The natural measure µ(S ) determines the probability
for the trajectory to visit a set S in phase space. In the
chaotic regime, we numerically observe that the probabil-
ity distribution of sequences (x(t), x(t − 1), . . . , x(t − n))
with length n ≪ τ is independent of τ. This indepen-
dence is depicted in the upper two panels in Fig. 3. The
panels show as an example the joint probability distribu-
tion P (x(t); x(t − 2)) for τ = 50 and τ = 131. Theses
distributions have very characteristic features but still ex-
actly match for different delays. This is true for the joint
probability distributions P (x(t); x(t − 1); . . . , x(t − n)) for
n ≪ τ.

Similarly, we observe that joint probability distributions
of the form

P[x(t); x(t−1); . . . x(t−n); x(t−τ+na)); . . . x(t−τ−nb)] ,
(16)

with n, na, nb ≪ τ are independent of τ. This is depicted in
the lower two panels of Fig. 3, where the joint probability
distribution of x(t) and x(t − (τ − 1)) are shown for τ = 50
and τ = 131. In the numerical simulations we find further,
that the probability distributions of x(t) and x(t − k) where

k is neither small nor close to a multiple of the delay time
are completely independent.

Conclusion — In conclusion, we have presented analyt-
ical and numerical indications that the natural measure of a
delayed map with large delay is concentrated on two differ-
ent types of periodic orbits: (i) periodic orbits with small
periods (T ≪ τ) and (ii) periodic orbits with periods close
to multiples of the delay time (T = nτ + ∆, with |∆| ≪ τ).
The latter type of orbits correspond to pulse like solutions.

We conjecture that the natural measure converges in a
certain sense as the delay time is increased. This is moti-
vated by the fact that the probability distribution of certain
patterns becomes independent of the delay time for large
delay. We believe that the number of pulse solution grows
such that it exactly compensates the increasing instability
of a single pulse.

We hope our investigation is a step in understanding the
interesting properties of delayed systems better.
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