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Abstract—Functional networks describe the depen-
dence of spatially distributed areas of the brain based on
temporal correlations. In this paper, we discuss how func-
tional networks generated from the time series of voxels in
an fMRI experiment vary over time in response to a peri-
odic retinotopic stimulation. Since functional connectivity
studies only consider the entire experimental time series,
there is usually only a single network constructed for each
experiment and subject. Our goal is to investigate how the
statistical properties of functional networks vary during an
experiment and the relationship between the complex net-
work measures.

1. Introduction

Brain functional networks express how different neural
regions are jointly activated during an experimental mea-
surement [1]. The blood oxygen level dependent (BOLD)
hemodynamic response from neural activity is captured by
functional MRI in the form of time series of voxels, which
are three dimensional measurement units of 2–3 mm per
side. The similarity in dynamics between two voxels i
and j is in general compared through the correlation co-
efficient of their corresponding time series vi(t) and v j(t)
[2], although other measures such as mutual information
[3, 4], coherence [5], or other wavelet-based methods [6]
have also been applied. In our case, we use the conserva-
tive definition over Pearson’s correlation coefficient and if
the correlation between two time series vi(t) and v j(t) lies
above a threshold rc, a strong relation among both voxels
is assumed and a link is set in the adjacency matrix A, i.e.,
Ai, j = 1, otherwise Ai, j = 0. Since correlation is a symmet-
ric operation, the resulting network is always undirected,
i.e., Ai, j = A j,i.

Most work in this area has focussed on networks for de-
scribing a stationary state of the brain, but in reality the
brain is a plastic system that changes its dynamic relations
depending on the input it receives. In this paper, our goal is
to characterize how the typical complex network measures,
e.g., node degree, characteristic path length, or modularity,
change by segmenting the time axis into disjoint intervals
corresponding to the same stimulation groups. Thus, we
obtain various realizations of the same functional network
for which we study the statistical properties of their mea-
sures, as well as the correlations among them to find rela-

0 100 200 300 400
0.2

0

0.2

0 100 200 300 400
0.2

0

0.2

0 100 200 300 400
0.2

0

0.2

Stimulation and 

MR activity

normalized signal of

highest activity voxel

"Rest"

"Center"

"Middle"

"Peripheral"

15s

15s

15s

15s

Repeated 6x per session

Figure 1: Overview of fMRI retinotopy experiment

tions that can not be identified from a single experimental
trace.

The remainder of this paper is as follows. In Section 2,
we briefly outline the experimental design and explain how
the networks were extracted. Then, in Section 3 we sum-
marize our evaluation, where we compare moments and
correlations of the complex network measures, and show
the statistics of a network aggregated over all extracted net-
works. Finally, this paper is concluded with Section 4.

2. Description of fMRI Experiment

We use in this study the same experimental data set that
was introduced in our previous work [7]. The experiment
consists of periodic stimulations of the primary visual cor-
tex (V1) through flickering checkerboard annuli of three
different sizes, denoted as “Center” (C), “Middle” (M), and
“Peripheral” (P), followed by a “Rest” (R) epoch without
stimulation. Each epoch has a duration of 6 scans of 2.5 s
each and we denote one complete sequence of CMPR as a
group of 24 scans. This is repeated 6 times within a session
and the entire experiment comprises 3 sessions for 2 sub-
jects. The F-values of the activation areas as output of the
SPM software [8] for Matlab are depicted in Fig. 2, which
shows as expected a high activation in the occipital region
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Figure 2: Output of F-test values of activation areas in V1
computed by SPM toolbox
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Figure 3: Layout of experiment with an extracted network
from a CMPR group (coronal view). The primary visual
area (V1) is densely interconnected by functional links.

where V1 is located.

Due to this regular experimental design, we split the en-
tire time series into portions of recurring CMPR groups
consisting of 24 scans each and construct a functional net-
work by thresholding the correlation matrix of the time se-
ries of each voxel for each group instead of the whole time
series, see Fig. 3. In order to reduce the size of the matrix,
we limit ourselves to voxels taken at a sampling step size
of 3 voxels in either dimension. The resulting 18 networks
form the basis of our evaluation and for the sake of a better
comparison, we varied the correlation coefficient threshold
rc for each network such that there is a fixed number of
` = 500 links. In other words, since the networks represent
the same sequence of CMPR at different times, we can con-
sider the network as stochastic quantity and the 18 obtained
networks as realizations of this random variable.

From Fig. 4, we can recognize that while many networks
have a common high connectivity in the occipital area, sev-
eral networks also have a large number of links in other
regions that are not involved in visual processing. This is
quite likely caused by the short length of the 24 samples
used for calculating the correlation coefficients.

Table 1: Average values of complex network measures.
Numbers in parentheses indicate the coefficient of varia-
tion. Randomized networks were averaged over 100 repe-
titions.

original randomized
nodes n 212.72 (0.20) 212.72 (0.20)

modularity Q 0.64 (0.16) 0.44 (0.18)
path length L 5.89 (0.27) 3.43 (0.12)
assortativity r 0.25 (0.45) -0.08 (-0.59)
clust. coef. C 0.28 (0.20) 0.07 (0.82)

degree 〈k〉 4.74 (0.24) 4.74 (0.24)

3. Evaluation of Network Measures

We now perform a statistical evaluation of the extracted
networks by studying their complex network measures. For
the numerical evaluation, we used the Brain Connectivity
Toolbox [9] in Matlab.

3.1. Moments of Network Measures

In the next step, we investigate standard complex net-
work measures and try to quantify any fluctuations and cor-
relations that these values show. For this, we use all 36
extracted networks of both subjects and construct each of
them to have 500 links by varying the correlation thresh-
old rc. Furthermore, we compare the values to those of
completely randomized networks having the same degree
distribution as the original network. The results are sum-
marized in Table 1.

From Table 1 we can recognize that the original brain
networks have higher average values of modularity, assor-
tativity, clustering coefficient, and path length. In fact, the
randomized networks have almost no degree correlations
(assortativity) and exhibit almost no noticeable clustering.
The CDFs of modularity, assortativity, and clustering coef-
ficient are exemplarily shown in Fig. 5.

3.2. Correlations between Metrics

Since we now have a series of values for each considered
measure, we can identify any correlations between the val-
ues. This is shown in Tables 2a and 2b for the original and
randomized networks, respectively.

We can recognize from these tables that there is a
clear separation of local (clustering coefficient, degree)
and global measures (nodes, modularity, characteristic path
length) depending on their respective correlations. We can
recognize two main differences in these tables. First, the
correlations of assortativity and other measures differ sig-
nificantly and even change their sign when comparing the
original and randomized networks. Furthermore, the other
measures have larger absolute values for both positive and
negative correlations in randomized networks.
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Figure 4: The 18 networks constructed from each CMPR group for Subject 1 (axial view). For sake of clarity, the threshold
for each network was individually adjusted so that each resulting network has 100 links.
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Figure 5: CDFs of modularity, assortativity, and clustering
coefficient obtained from CMPR groups

3.3. Superposition of Networks

Although our goal was to generate separate realiza-
tions of networks in order to obtain their statistics, we
can also compare the resulting structure after superimpos-
ing all generated CMPR networks. The sum of each of
these 18 adjacency matrices A(k) of Subject 1, leads to a
weighted matrix A∗ =

∑
k A(k), where the weight repre-

sents the number of times the same link reappears among
all networks. We then remove all links which are below a
weight threshold w′ and obtain a common adjacency matrix
A′ = sign(A∗ > w′). This is illustrated in Fig. 6 for Subject

Table 2: Correlation coefficient of network measures (` =

500 links). Differences in sign are highlighted in boldface.

(a) Original networks

n Q L r C 〈k〉
n 1.00 0.79 0.54 -0.17 -0.62 -0.76
Q 0.79 1.00 0.70 -0.03 -0.60 -0.88
L 0.54 0.70 1.00 0.36 -0.28 -0.49
r -0.17 -0.03 0.36 1.00 0.19 0.10
C -0.62 -0.60 -0.28 0.19 1.00 0.86
〈k〉 -0.76 -0.88 -0.49 0.10 0.86 1.00

(b) Randomized networks

n Q L r C 〈k〉
n 1.00 0.77 0.83 0.81 -0.82 -0.76
Q 0.79 1.00 0.99 0.89 -0.92 -0.97
L 0.83 0.99 1.00 0.89 -0.90 -0.95
r 0.81 0.89 0.89 1.00 -0.98 -0.93
C -0.83 -0.92 -0.90 -0.98 1.00 0.97
〈k〉 -0.76 -0.97 -0.95 -0.93 0.97 1.00

1. It can be seen that for w′ of 3 or more, the resulting net-
work matches well with the V1 area with activations in the
occipital area of the brain, as can be seen from Fig. 2. This
result shows that it is sufficient to only consider the time se-
ries segments of shorter lengths than the whole time series,
if a large number of such groups is taken into account.
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(a) w′ = 2 (b) w′ = 3 (c) w′ = 4 (d) Entire time series

Figure 6: Thresholded sum of adjacency matrices. When removing all links with w ≤ 2 from A∗, we get a good approxi-
mation of the entire V1 functional network for retinotopy. (a) w′ = 1: 2821 nodes, 10296 links; (b) w′ = 2: 344 nodes,
1552 links; (c) w′ = 3: 129 nodes, 729 links; (d) entire time series.

4. Conclusion

In this paper we investigated brain functional networks
generated from a repetitive experimental pattern. Instead of
looking only at the entire time series, we segmented it into
groups, which yielded multiple replications of the same
functional network. Although the experimental design was
the same in all cases, we obtained several variations of
functional networks when projected to their anatomical co-
ordinates in Fig. 4. This multiplicity permitted us, however,
to evaluate statistical properties and correlations among the
observed complex network measures. We recognized a dis-
tinct grouping of global and local network measures that
are highly correlated with each other. Comparison with
randomized networks showed much stronger correlation
levels with changes of the sign of correlation than when
comparing assortativity with the other metrics. Finally, we
also showed that an aggregate view of the individual net-
works yielded a good approximation for the overall func-
tional network.
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