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Abstract—We provide a theoretical framework for in-
vestigating the binocular rivalry model based on the
stochastic dynamical systems theory. We adopt the
stochastic Lyapunov exponent as the criterion for the
stochastic stability of a system. As an application of our
theoretical framework, we show how the stochastic Lya-
punov exponent can explain the perceptual stabilization in
the model of the binocular rivalry.

1. Introduction

When the input image of the left eye is different from
that of the right eye, the recognized image is not a mix-
ture of both, but rather it is choosen from one of the in-
put images. Furthermore, the recognized image alternates
between two candidate images stochastically and sponta-
neously, even when the input images remain constant. This
phenomenon is called binocular rivalry. Binocular rivalry is
one of the most useful phenomena for studying Neural Cor-
relates of Consciousness (NCC), because it lies at the basis
of fixed visual input stimuli. After the term NCC was pro-
posed by Crick and Koch in 1998 (see [4]), the published
papers on binocular rivalry gradually increased, including
review papers published in 2002 [2], 2006 [12], 2008 [11],
and 2011 [3]. At this moment, binocular rivalry has be-
come one of the attractive research fields for the study of
NCC.

Since binocular rivalry looks like simply alternation be-
tween two stable recognition states, most of the theoret-
ical studies are based on a model that describes recipro-
cal inhibition and adaptation. However, there is a phe-
nomenon which cannot be explained by such traditional
model. When the input image is intermittently presented,
then one image stabilizes for a long time and the time-scale
is much larger than the adaptation time-scale. This phe-
nomenon is called perceptual stabilization [9], [7] and it
cannot be explained by the traditional reciprocal inhibition
and adaptation scheme [11]. In 2007, Noestet al. pro-
vided a theoretical model of perceptual stabilization [8].
However, we still do not have enough knowledge about
the perceptual stabilization especially from the viewpoint
of dynamical systems. Especially in the field of binocular
rivalry, we have no theoretical criterion on how to measure
the stochastic stability. In this report, we show the theoreti-
cal framework for investigating the binocular rivalry model

based on the stochastic dynamical systems theory [1], [5].

2. Perceptual Stabilization and the Noest Model

In 2007, Noestet al. provided a theoretical model for
perceptual stabilization [8]. The Noest model is described
with the following equations,

τ
dH1

dt
= X1(t) − (1+ A1(t))H1(t) + βA1(t)

−γS(H2), (1)

τ
dH2

dt
= X2(t) − (1+ A2(t))H2(t) + βA2(t)

−γS(H1), (2)
dA1

dt
= −A1(t) + αS(H1), (3)

dA2

dt
= −A2(t) + αS(H2), (4)

where the functionS is a sigmoidal function,

S(z) =

{
z2/(1+ z2), z> 0
0, otherwise.

(5)

X1(X2) is the imput image of the left (right) eye.Hi , called
“local field”, corresponds to the membrane potentials of
neurons which relates to the perception ofXi . A1(A2) de-
notes adaptation of the left (right) perception and it is mod-
eld as “leaky integrator”. Since the time scaleτ is much
smaller than one,Ai and Hi are slow and fast variables,
respectively. α, β, γ are constant parameters. Whenβ is
equal to zero,Hi behaves as a traditional model with re-
ciprocal inhibition−γS(H j) and adaptationAi . The input
imageXi(t) is not constant, but a function of time, which is
described as

Xi(t) =

{
X0, 0 ≤ t[modTon + To f f ] < Ton,
0, otherwise,

(6)

whereX0 is the constant amplitude of the visual input.
The Noest model (Eq.(1)–(6)) is a modification of the

traditional one. They add the neural baseline termβAi . For
the traditional case, the adaptation for the dominant neu-
ron group is always larger than the adaptation for the sup-
pressed group. Thus, the dominant group always switches
for each intermittent changing of the input with period
Ton + To f f . However, the Noest model balances the strong
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Figure 1: Time-series ofHi (upper panel) andAi (lower
panel) in the reciprocal inhibition and adaptation model.
Parameters:X0 = 1, τ = 1/50,α = 5, γ = 10/3, A1(0) =
0.03, A2(0) = 0.02, H1(0) = 0.1, H2(0) = 0.2, Ton = 0.5,
To f f = 1, β = 0.

adaptation for the domain group with its own baseline. As
a result, the dominant perception persists for a long time
during intermittent input change under appropriate condi-
tions (see Fig. 1). Figure 2 shows the time-series data for
the Noest model, when the input image is intermittently
presented.

The Noest model can represent the phenomenon of the
perceptual stabilization. However, we still do not have
enough knowledge about the perceptual stabilization espe-
cially from the viewpoint of the dynamical system. Espe-
cially in the field of binocular rivalry, we have no theoret-
ical criteria how to measure the stochastic stability. In the
next section, we introduce the stochastic dynamical sys-
tems theory, which can be a powerful methodology to un-
derstand the stochastic stability in the binocular rivalry.

3. Analysis based on Stochastic Dynamical Systems
Theory

3.1. Derivation of the Stochastic Lyapunov Exponent

In the paper by Noestet al.[8], they discuss the case
when a noise term is added toβ, which is related to the neu-
ral baseline. The equations of the stochastic Noest model
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Figure 2: Time-series ofHi (upper panel) andAi (lower
panel) in the Noest model. Parameters:X0 = 1, τ = 1/50,
α = 5, γ = 10/3, A1(0) = 0.03, A2(0) = 0.02, H1(0) = 0.1,
H2(0) = 0.2, Ton = 0.5, To f f = 1, β = 4/(3α).

are described as the following Ito SDE:

dH1(t) =
1
τ

(X(t) − (1+ A1(t))H1(t) + βA1(t)

−γS(H2)) dt+
σ

τ
A1(t)dWt, (7)

dH2(t) =
1
τ

(X(t) − (1+ A2(t))H2(t) + βA2(t)

−γS(H1)) dt+
σ

τ
A2(t)dWt, (8)

dA1(t) = (−A1(t) + αS(H1)) dt, (9)

dA2(t) = (−A2(t) + αS(H2)) dt., (10)

whereσ is the noise intensity. In this case, the noise
term of the right hand side of Eq.(7) and Eq.(8) is
σ
τ
Ai(t)dWt, which is multiplicative noise. The correspond-

ing Stratonovich SDE are
dH1(t)
dH2(t)
dA1(t)
dA2(t)

 =

f1(H1,H2,A1,A2)
f2(H1,H2,A1,A2)
f3(H1,H2,A1,A2)
f4(H1,H2,A1,A2)

 +
0 0 σ

τ
0

0 0 0 σ
τ

0 0 0 0
0 0 0 0



H1(t)
H2(t)
A1(t)
A2(t)

 ◦ dWt. (11)

The drift term of the above Ito SDE is the same as that of
the Stratonovich SDE in this case.
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The linearized SDE about a sample pathX∗(t) =
(H∗1(t),H∗2(t),A∗1(t),A∗2(t))> are


dZ1(t)
dZ2(t)
dZ3(t)
dZ4(t)

 =

∂ f1
∂H1

∂ f1
∂H2

∂ f1
∂A1

∂ f1
∂A2

∂ f2
∂H1

∂ f2
∂H2

∂ f2
∂A1

∂ f2
∂A2

∂ f3
∂H1

∂ f3
∂H2

∂ f3
∂A1

∂ f3
∂A2

∂ f4
∂H1

∂ f4
∂H2

∂ f4
∂A1

∂ f4
∂A2


∣∣∣∣∣∣∣∣∣∣∣∣∣
X∗(t)


Z1(t)
Z2(t)
Z3(t)
Z4(t)

 dt+


0 0 σ

τ
0

0 0 0 σ
τ

0 0 0 0
0 0 0 0



Z1(t)
Z2(t)
Z3(t)
Z4(t)

 ◦ dWt (12)

whereZ1(t) = H1(t) − H∗1(t), Z2(t) = H2(t) − H∗2(t), Z3(t) =
A1(t) − A∗1(t), andZ4(t) = A2(t) − A∗2(t).

The maximum Lyapunov exponentλ1 is numerically es-
timated as

λ1 ' lim
N→∞

N∑
n=1

q(S(n∆t)), (13)

q(s) = s>As+
1
2

s>
(
B+ B>

)
s− (s>Bs)2, (14)

s>As = −1
τ

(1+ A∗1)(s1)2 − 1
τ

dS
dH2

(H∗2)s1s2 − H∗1s1s3

+
β

τ
s1s3 −

1
τ

dS
dH1

(H∗1)s1s2 −
1
τ

(1+ A∗2)(s2)2

−H∗2s2s4 +
β

τ
s2s4 + α

dS
dH1

(H∗1)s1s3 − (s3)2

+α
dS
dH2

(H∗2)s2s4 − (s4)2, (15)

1
2

s>
(
B+ B>

)
s =

σ

τ
(s1s3 + s2s4), (16)

s>Bs =
σ

τ
(s1s3 + s2s4). (17)

3.2. Perceptual Stabilization and Lyapunov Exponent

Figure 3 depicts the region of the perceptual stabilization
on (To f f ,Ton) plane for deterministic Noest model. Fig-
ure 4 shows the stochastic Lyapunov exponent as function
of To f f andTon. All values of the stochastic Lyapunov ex-
ponentλ1 are negative, but their absolute values differs. We
can see that|λ1| in the region of the perceptual stabilization
is slightly smaller than that in the region of the perceptual
switch. It means that the perceptual switch is slightly more
stable, compared with the perceptual stabilization. Fur-
thermore,|λ1| takes much smaller values when (To f f ,Ton)
is around the boundary between perceptual stabilization.
Around the boundary, the time series transiently shows per-
ceptual stability but it converges to the perceptual switch
(see Fig.5). Since the dynamics is the mixture between two
different behaviors, the stochastic stability decreases. This
time series also shows that the perceptual switch seems to
be more stable than the perceptual stabilization.

1/2

2**-0.5

1

1/4 2**-1.5 1/2 2**-0.5 1

T
on

Toff

,1,1,1, or ,2,2,2
perceptual stabilization

,1,2,1,
perceptual switching

Figure 3: The region of the perceptual stabilization on
(To f f ,Ton) plane for deterministic Noest model. Right side
from the boundary is the region of the perceptual stabiliza-
tion. Parameters:X0 = 1, τ = 1/50, α = 5, γ = 10/3,
A1(0) = 0.03,A2(0) = 0.02,H1(0) = 0.1, H2(0) = 0.2.

4. Discussion and Conclusion

In this report, we showed that the perceptual switching
is more stable than the perceptual stabilization. This con-
tradicts our intuition because switching occurs when the
system becomes unstable. Though our result means that
the perceptual switching is unstable, perceptual stabiliza-
tion is even more unstable. Perceptual stabilization occurs
because the perception of the system is unstably forced to-
wards one of two perceptions. It seems that the term “per-
ceptual stabilization” is not appropriate from the viewpoint
of stochastic dynamics.

It may be claimed that the stochastic dynamical systems
theory is limited, because it can be used only when we
know the analytical expression of the stochastic differen-
tial equation of the target dynamical system. If we can find
the limit cycle and its phase resetting curve in the target
system, then it is possible to apply our method, using the
results in [10].

In the previous section, we interpreted the absolute value
of the stochastic Lyapunov exponent as the strength of the
stochastic stability. However, usually we only discuss the
sign of the Lyapunov exponent, especially for the study
of chaos in a deterministic dynamical system. We have
already checked that the absolute value can explain the
strength of the stability. For example, in the case of Brow-
nian motion on a quartic bistable potential function, the
stochastic Lyapunov exponent is always negative but the
absolute value goes up and down, together with an increase
in the noise intensity (not shown in this report). It means
that, for low noise levels, the state detects only one attrac-
tor, but for higher noise levels, the state can detect two at-
tractors.

At this moment, binocular rivalry has become one of the
attractive research fields for the study of NCC. With the

- 741 -



Lyapunov exponent
   -0.06
   -0.08
    -0.1

   -0.12
   -0.14

1/4 2**-1.5 1/2 2**-0.5 1Toff 1/2

2**-0.5

1

Ton

-0.15

-0.1

-0.05

 0

Figure 4: Stochastic Lyapunov exponent as function of
To f f andTo f f for stochastic Noest model withσ = 0.001.
Parameters:X0 = 1, τ = 1/50, α = 5, γ = 10/3,
A1(0) = 0.03,A2(0) = 0.02,H1(0) = 0.1, H2(0) = 0.2.

growing interest of applying mechanisms from the brain
dynamics to ICT, studying the stochastic stability of brain
can also be helpful for designing new robust control mecha-
nisms in information networks. Apart from its relevance for
neural systems, the alternation between stable states may
serve as a model for controlling the duty cycle in networks
of sensors, subsets of which need to selectively switch on
and off, depending on unpredictable environmental condi-
tions and strict limitations of energy requirements.

In conclusion, we have provided the theoretical frame-
work about the analysis of stochastic stability for binocu-
lar rivalry, based on stochastic dynamical systems theory.
We have shown the mathematical procedure to calculate
the stochastic Lyapunov exponent, step by step, as well
as the application of the methodology to the Noest neuron
model. Our numerical investigation shows that the stochas-
tic Lyapunov exponent is a useful criterion for estimating
the stochastic stability of perceptual stability in the case of
intermittent input images. We have shown that perceptual
switching is more stable than the perceptual stabilization.
Before our study, there has been no theoretical criteria how
to measure the stochastic stability. Therefore our method-
ology can shed new light on the field of the binocular ri-
valry from a theoretical point of view.
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