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Abstract—An information network has hierarchical
structures both physically and functionally. Higher-layer
control is always influenced by lower-layer behavior and
lower-layer control always behaves in accordance with re-
quests issued by higher-layer control. Although there are
lessons learned from practical experiments, simulation ex-
periments, and mathematical analysis, interactions between
layered network control methods is not fully explored. In
this paper, we analyze interaction between layered control
mechanisms, more specifically, adaptive routing protocols
based on a nonlinear mathematical model. We change the
degree of coupling of two layers and evaluate the conver-
gence time and the path length. Results show that lower-
layer routing with higher-layer awareness provides the bet-
ter performance, which suggests similarity to perception
process of ambiguous figures in the human brain.

1. Introduction

An information network has hierarchical structures both
physically and functionally. Based on the OSI reference
model [1], seven layers are defined, i.e. application, presen-
tation, session, transport, network, data link, and physical
from the top to the bottom. One of the main purposes of the
layered architecture is modularity of networking functions.
Each layer provides a higher layer with certain network-
ing functions through the layer boundary while hiding de-
tails of structures, mechanisms, and states of lower layers.
For example, the network layer is responsible for relaying
packets toward the destination node, i.e. routing. The trans-
port layer, which lies above the network layer, can ensure
that all segments arrive at the destination node by using
the routing function of the network layer. Because of the
modularity, any protocol can be introduced to a network, as
far as it offers the appropriate services to upper-layer pro-
tocols by using services provided by lower-layer protocols
through inter-layer interfaces.

In the original reference model layers were designed so
that information flow across layer boundaries was min-
imized. However, researchers have been considering a
cross-layer architecture which allows stronger interactions
and interdependency between layers or even incorporating
different layers into one [2]. Especially for a wireless sen-
sor network, cross-layer control is preferred, because the
architecture with many layers is too complicated and re-
source expensive for a tiny device with the small amount

of memory and the poor processing capacity [3]. Further-
more, by using internal information of other layer, the op-
timality of control can be expected to increase, e.g. path
selection considering the radio quality.

Regarding the physical hierarchy, it is well known that
the Internet is a collection of networks, called AS (Au-
tonomous System) which is managed by a certain routing
policy. An AS corresponds to a network of an ISP (In-
ternet Service Provider), for example, and it consists of a
large number of routers, physical links, and other network-
ing facilities. ASs are connected with each other to have
the global connectivity. The BGP (Border Gateway Proto-
col) is used for inter-AS routing and IGPs (Interior Gate-
way Protocols) such as RIP and OSPF are used for intra-
AS routing. Therefore, from a viewpoint of BGP, a net-
work consists of ASs and their internal structures are hid-
den. Then, we can regard an AS-level topology as a higher-
layer structure and router-level topologies as lower-layer
structures. In the context of overlay networking, a logi-
cal network, which consists of hosts exchanging messages
and virtual links representing sessions and connections es-
tablished between hosts, is built over physical networks.
Furthermore, with the rapid development of network vir-
tualization technologies, we can build multiple virtual net-
works over physical networks. It helps in improving the
scalability and controllability of information networks.

Although there are lessons learned from practical exper-
iments, simulation experiments, and mathematical analy-
sis, interactions between layered network control methods
is not fully explored. For example in [4], we verified that
topology adaptation in an overlay network must operate on
the control frequency which is higher than or at least as
high as synchronization in physical sensor networks. Anal-
ysis of layered model from an interdisciplinary viewpoint
can be found in [5], which regards layered control as an
optimization problem. In [6], we investigated the rela-
tionship among the degree of coupling and the resultant
characteristics of layered adaptive routing mechanisms. In
the evaluation, we considered interactions between rout-
ing in an overlay network and routing in a mobile ad-hoc
network. An overlay network consists of some of phys-
ical nodes of the mobile ad-hoc network as communicat-
ing hosts and virtual links corresponding to connections es-
tablished among those nodes. Simulation results indicated
that the coupling where the upper-layer routing mechanism
took the performance of the lower-layer routing mechanism
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Figure 1: Layered network

into account led to the smallest end-to-end delay and the
small delay variation.

In this paper, we analyze another scenario of inter-layer
interactions. As the higher-layer control, we consider rout-
ing in the higher-layer network, which consists of virtual
nodes and physical links among them. A virtual node cor-
responds to a lower-layer network, e.g. AS, which con-
sists of physical routers and physical links among them as
shown in Fig. 1. As described above, a lower-layer network
conducts intra-network routing to establish paths between
an arbitrary pair of routers in the domain. Communication
between physical routers belonging to different domains is
performed over a path established across multiple domains
which are selected by the higher-layer routing. We change
the degree of coupling of two layers and evaluate the time
constant, the convergence time, and the path length.

2. Attractor Selection Model

A routing protocol adopted in this paper is developed
based on a nonlinear mathematical model of biological be-
havior. The model, called the attractor selection model,
was derived from autonomous and adaptive nutrient syn-
thesis of E. coli in order to live and grow in the dynamically
changing nutrient condition of the environment [7]. There
is not a signal transduction network to trigger synthesis of
an appropriate nutrient according to environmental nutrient
condition. Instead, adaptive selection of nutrient synthesis
is driven by noise or fluctuation.

The attractor selection model is formulated in the form
of a Langevin type of equation.

%= (D) X + 7 (1)

X corresponds to the state of a system. In the case of E. coli
cells, ¥ stands for the mRNA concentrations, which control
nutrient synthesis. Function f defines attractors of a dy-
namic system, where the state of a dynamic system stably
stays after the transition phase. Attractors correspond to al-
ternatives of control or behavior, such as nutrient synthesis.
«a is called activity, which means the goodness of control or
behavior, e.g. the cellular growth rate. Finally, 77 expresses
internal and external noise.

The attractor selection model is expected to explain
adaptive behavior of biological systems other than bacterial
nutrient synthesis. For example, perception of an ambigu-
ous figure switches between multi-stable patterns in the hu-
man brain [8]. Watching, e.g. “My Wife and My Mother-
in-Law”, the brain perceives it as either of a young woman
or an aged woman. That is, perception moves between two
attractors in the language of the attractor selection model.
The higher-tier perception of the whole image is influence
by lower-tier perception of individual ambiguous parts, e.g.
a chin of a young woman or a nose of an aged woman, sim-
ilarly to a binding process [9]. Perceptions of individual
parts are independent from each other at the beginning and
they fluctuate between potential patterns or attractors. At
this time, the higher-tier perception is unstable. Once per-
ceptions of some parts eventually become consistent with
each other, it triggers convergence of higher-tier perception
to one of stable patterns. It further drives unstable percep-
tions of other parts to those patterns that are consistent with
the global pattern and makes them stable. Behavior of lay-
ered routing mechanisms introduced in the next section is
similar to the above perception process and we expect that
our evaluation gives insight into perception of ambiguous
figures.

3. Layered Adaptive Routing

The original model of our attractor selection-based rout-
ing mechanism is presented in [10]. In an attractor
selection-based routing mechanism, attractors correspond
to next-hop nodes to forward a packet.

Virtual node i corresponding to domain i maintains state
vector ¥;; for destination virtual node s corresponding to
domain s. Ttis defined as ¥y = {Xis.1, X525 - - - » Xi.s.n} Where
n is the number of neighbor nodes. At regular control in-
tervals, each virtual node i updates state vectors ¥; ; for all
destination nodes s by using the following equation.

dx;
dt

= Ai(@y) X ais + 17 )

f_l) (%) defines n attractors where one vector element x; j,
(I < j < n) of state vector X;, has a large value and the
others have a small value. In packet forwarding, a neighbor
node with the largest vector element is chosen as a next
hop for destination virtual node. «; is the activity of the
current path from virtual node i to virtual node s, which is
given as the ratio of the hop count of the current path in the
higher-layer network to the minimum hop counts in the last
10 control intervals.

Similarly, physical router j in domain i maintains state
vector ¥; ;x for destination physical router k in the same
domain. At regular control intervals, each physical router
J updates state vectors ¥; j for all destination routers k by
using the following equation.

dy; j

== = hh0 X @+ 17 3)
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As f_z)()’)’, k), we use the similar function to ﬁ(ﬁ,_f). @i jk
is the activity of the current path from physical router j to
physical router k in domain 7, which is given as the ratio of
the physical hop count of the current path in the domain to
the minimum hop counts in the last 10 control intervals.

We consider four alternatives of coupling of two layers.
The first one is Independent. The higher-layer routing uses
Eq. (2) and the lower-layer routing uses Eq. (3). Each layer
tries to maximize its own activity by establishing shortest
paths independently from the other layer.

The second is VNusePN, where the higher-layer routing
takes into account the activity of the lower-layer routing.
In VNusePN, a virtual node uses the following equation in
updating state vectors in place of Eq. (2).

dx; s
dt

gi(@;..) is a coupling function for a virtual node in the
higher layer to reflect the performance of intra-domain
routing. Among alternatives of coupling functions, we use
gi(ai.) = ¥ (Xk @iju/INi = {j}D/INil, where N; is a set of
physical routers in domain i. That is, g;(«;..) gives an av-
erage of activities of physical routers in domain i, which
virtual node i represents.

On the contrary, PNuseVN uses the following equation
for a physical router to take into account the goodness of
routing in the higher layer.

d)7t, ik
dt

g2(a;.) is a coupling function for a physical router in the
lower layer to reflect the performance of inter-domain rout-
ing. In this paper, we use g»(a;.) = X @is/ID — {i}|, where
D is a set of virtual nodes in a network.

Finally, Both is the tight coupling. Both of the higher-
layer routing and the lower-layer routing try to maximize
the total performance by sharing activities among layers by
using Egs. (4) and (5).

Intuitively speaking, the tight coupling, i.e. Both, leads
to the best performance among the above four alternatives.
However, it takes the longest to find the globally optimal
solution and it is easily affected by slight perturbations.

= @) X ais X g1e.) + 1 )

= A6 X @ X gaa) + 1 (5)

4. Simulation Results

We built a network consisting of 10 domains with 30
nodes. Therefore, there were 10 virtual nodes. Their
topologies were generated by the Waxman model [11]. We
used NetlLogo 5.0 and assumed no delay. We further as-
sumed that a virtual node or a physical router had the up-to-
date information about the length of all paths. We adopted
the same parameters for routing mechanisms in both layers.
We changed the ratio of control interval on the higher layer
to that of the lower layer from 1 to 10 to see its influence.

We use the convergence time and the path length as per-
formance measures. The convergence time is the number

of time steps required for all nodes to achieve the activity
of 1. At the beginning of a simulation run, all activities are
0 at all nodes and vector elements are set at random from 0
to 1. The path length is the average length of paths between
arbitrary pair of physical routers in a network, which can be
derived by multiplying the average path length of domains
and the average path length in the higher layer. We also
consider the time constant when 63.2% of nodes achieve
the activity of 1 and the path length at the time constant. In
the following, results averaged over 100 runs are depicted.

Figure 2 shows the average convergence time. As shown
in the figure, the convergence time increases as the interval
ratio becomes large. It is because the higher-layer routing
takes longer time to converge for longer control intervals.
The convergence times of Independent and VNusePN are
smaller than those of PNuseVN and Both. Whereas the
convergence time of PNuseVN approaches those of Inde-
pendent and VNusePN, it remains high with Both as con-
jectured. In Fig. 3, the average path length is the shortest
with Both and PNuseVN. We also note that the interval ra-
tio does not affect the average path length very much.

As shown in Fig. 4, time constants of PNuseVN and
Both increase in proportional to the interval ratio whereas
they remain unchanged with Independent and VNusePN.
It implies that lower layer routing is dominant in layered
routing. However, as seen in Fig. 5, there is much room for
improvement in terms of path length at the time constant.
After the time constant the quality of paths is gradually im-
proved with Independent and VNusePN. On the other hand,
paths are as short as the converged ones at the time constant
in the case of Both and PNuseVN with small interval ratios.

In conclusion, PNuseVN is the best coupling in the sce-
narios considered in the paper, whereas the difference with
Both is not substantial. With PNuseVN, lower-layer rout-
ing takes into account the quality of paths in the higher-
layer routing. As such, when the activity of the higher-layer
routing becomes high, it induces convergence of lower-
layer routing. The phenomenon is very similar to the per-
ception process of ambiguous figures in the human brain
and we need to investigate the implication in more detail.

5. Conclusion

In this paper, we investigated the influence of degree
of coupling on the performance of layered routing mech-
anisms. Through simulation experiments we found that
lower-layer routing was dominant in layered routing. The
result that introduction of higher-layer awareness into
lower-layer routing provides better performance conforms
to the model of perception process of ambiguous figures in
the human brain. We plan to further investigate the similar-
ity and conduct additional experiments including resilience
against failures and perturbations.
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