
IEICE Proceeding Series 
 
 
 
 
A Modular Neural Network for Parallel Computation 

 
 
Yoshihiro Hayakawa, Daisuke Sasaki, Koji Nakajima 

 
 
Vol. 1 pp. 723-726 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



A Modular Neural Network for Parallel Computation

Yoshihiro Hayakawa†, Daisuke Sasaki‡ and Koji Nakajima‡

†Sendai National College of Technology
4-16-1 AyashiChuoh, Aoba-ku, Sendai-shi, 989-3128, Japan

‡The Laboratory for Brainware/Laboratory for Nanoelectronics and Spintronics,
Research Institute of Electrical Communication, Tohoku University,

2-1-1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan
Email: hayakawa@sendai-nct.ac.jp, sasaki@nakajia.riec.tohoku.ac.jp, hello@riec.tohoku.ac.jp

Abstract—Some of combinatorial optimization prob-
lems cause exponential increases of calculation time in
terms of a problem size. In case of using a neural network
solver, faster calculation is prospective because each neu-
ron is updated in essentially parallel. In fact, however, a
neural network solver is performed by using the ordinary
differential equation in a computer, so that a calculation
speed is not enough yet. Hence, in this paper we propose
a modular neural network for implementing parallel com-
putation with a MPI technique. Each module is assigned
to each processor and these are calculated in parallel in our
proposed modular neural network and we discuss the pos-
sibility of improvement of calculation by decreasing com-
munication frequency between processors.

1. Introduction

The combinatorial optimization problems such as the
Traveling Salesman Problems (TSPs) or Quartic Assign-
ment Problems (QAPs) include a lot of applications, for
example, the packet routing , delivery planning, etc. How-
ever, it is not easy to obtain useful solutions of these prob-
lems in real time by using conventional computers. Neu-
ral networks having a energy function, which are derived
from symmetric synapse connection, can be used to solve
combinational optimization problems and are an object of
research to aim a fast solver.

As one of the solvers of these problems, we have pro-
posed the Inverse function Delayed (ID) network [1]. The
ID network is a neural network that has a negative resis-
tance effect in its dynamics, and the output space of the
network has a negative resistance region. The network state
is updated along the gradient of the quadratic form energy
function if the state is outside the region; otherwise the state
is not updated along the gradient of the energy function.
Hence we can destabilize the undesirable states through ap-
propriate setting of the negative resistance. Especially, N-
Queen problems or 4-Color problems are able to be solved
with 100% success rate by using the ID network [1]. Addi-
tionally, for solving TSPs or QAPs, a Higher-order Con-
nection ID (HC-ID) network has been proposed and we
have also demonstrated solver having the fourth-order en-
ergy function for these problems[2]. However, the problem

size of these demonstration is very small. Although a dedi-
cated neuro-chip is required to apply to practical problems,
we don’t have it with enough size and speed yet. Under the
present situation, we have to execute a simulation of neural
networks by computer systems.

Recently, a message passing interface (MPI)[3] has been
developed and it is pretty commonly now to use in the field
of a computer simulation. We expected to be able to use
this MPI technique when a big size neural network is cal-
culated. However, if we apply a MPI technique to a neural
network having full-connected synapse weights, a commu-
nication cost increases with increasing neuron size. In this
paper, hence, we propose a modular neural network which
is a new method reducing a communication cost.

2. A modular neural network

Both Hopfield model and ID model have the same inner
potential dynamics. A inner potential of these is described
as below,

τ
dui

dt
+ ui =

j=N∑
j=1

wi jx j + hi, (1)

where τ , wi j,ui,xi and hi are time constant, synapse weight
from j− th neuron to i− th one, inner potential, output and
bias of i − th neuron, respectively.

When we do parallel computation by using plural com-
puters (processors), mutual communication is needed. A
Message Passing Interface(MPI)[3] is a library of these
communication functions, we can easily program for a par-
allel computation. When we use a MPI, we have to divide
neurons in the network into modules equally. For example,
let us consider that a neural network is divided by m mod-
ules. A neuron set of γ − th module is defined as Mγ. In
such a case, we rewrite Eq.(1) as a following equation,

dui

dt
=
∑
j∈Mγ

wi jx j +
∑
j<Mγ

wi jx j + hi (2)

=
∑
j∈Mγ

wi jx j + θ
ex
i , (3)

where a neuron i is a member of Mγ, the first term of Eq.(2)
means a calculation inside the same module, the second

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 723 -



term is a calculation of inputs from other modules. Here,
θex

i is defined as a total input from other modules and a bias.
Eq.(2) changes to Eq.(3).

The calculation of the first term of Eq.(3) can perform in
perfectly parallel as shown in fig.1(A) because each module
assigns to each computer. However θex

i needs information
from other modules, so communications between mutual
modules happen as shown in fig.1(B) and hence these pro-
cess cannot be performed in parallel. Furthermore, much
time is required because these communications are done
through an Ethernet line or a BUS.

　　　

　　　 　　　

　　　
Figure 1: Operation timing. (A) Inside module calculation.
These operation can perform in perfectly parallel. (B) θex

i
calculation. These operation need communications of other
modules. (C) MPI normal operation. (D) Modular neural
network operation.

　　　

In a case of a normal MPI programming we require to
update θex

i of Eq.(3) every time interval (T I) of simultane-
ous ordinary differential equations as shown in fig. 1(C),
so a communication cost between each module is no small
matter. In this paper, hence, we propose a modular neural
network that is a new method to reduce this communica-
tion cost. The modular neural network updates θex

i for a far
longer period Tcom than T I as shown in Fig.1(D). We label
Tcom as a communicating time interval.

3. Minima of an energy function (equilibrium points)
and a converging process

Minima of energy function of conventional network are
satisfied with du/dt = 0 in Eq.(1). Equilibrium points of
Eq.(3) are the same ones of Eq.(1). Hence, our proposed
modular neural network also has the same minimum posi-
tions.

Here, let us consider the converging process of a mod-
ular neural network. The converging process depends on

a communicating time interval Tcom. When Tcom � τ
(Tcom ≈ T I), the calculation method is practically equiva-
lent to a normal MPI programming. Hence, we expect that
its dynamics is also equivalent to a conventional Hopfield
model.

An energy function of a conventional Hopfield model is

Ehop = −
1
2

∑
i

∑
j

wi jxix j −
∑

i

hixi +
∑

i

∫ xi

f −1(x)dx. (4)

In case of Tcom � τ, during a parallel operation as shown
in fig.1(A), an energy function Emod of a modular neural
network is given by

Emod =
∑
γ

−1
2

∑
i∈Mγ

∑
j∈Mγ

wi jxix j −
∑
i∈Mγ

θex
i xi

+
∑
i∈Mγ

∫ xi

f −1(x)dx

 , (5)

and its time evolution is given by

dEmod

dt
= −
∑
γ

∑
i∈Mγ

(
dui

dt
)2 d f (ui)

dui
≤ 0. (6)

　　　Figure 2: A state transition of modular neural network.
(Tcom � τ)

During this period, therefore, Emod also decreases with
time and it converges to minimum states because Tcom is

- 724 -



enough long to converge. After that, the mutual commu-
nications in fig.1(B) occurs and then the shape of Emod

changes dramatically in accordance with changing θex
i . As

a result, it is easy assume that a periodic behavior occurs
as shown in fig 2. We consider a poor performance with
Tcom � τ because it reaches to periodic states instead of
solution states. Of course, local or global minimum states
of eq.(4) are the same ones of eq.(5), so that these states
remain stationary even after the mutual communications.

Hence, Our most interesting situation is Tcom ≈ τ. In
this case, we investigate the performance of modular neural
networks by using a computer simulation.

4. Simulation

In this paper, we use the n-Queen problem which is one
of combinatorial optimization problems to solve by neural
networks. The n-Queen problem is the problem of placing
n chess queens on an n×n chessboard so that no two queens
attack each other. In case of this problem, we prepare n× n
neurons on chessboard and we interpret that a queen is put
on this grid only if an output of neuron is 1.

To apply this problem to our proposed modular neural
network, we have to divide this neurons to some modules.
In case of a neural network for n-queen problem, we di-
vide column and row into c and r parts, respectively. Fig.3
shows an example of a dividing network into 4 parts (c = 1
and r = 4).

　　　

　　　

Figure 3: An example of modularizing a network.
　　　

4.1. Hopfield type modular neural network

First, we consider to use a conventional Hopfield model
and a relation between u and x is given by x = (tanh(βu) +
1)/2. These simulations were investigated by 8 machines
system (3.4GHz Pentium4, 1GB memory and Gigabit Eth-
ernet). Figure 4 shows results of 8 and 16-Queen problem
with c × r = 8 × 1 and 4 × 1, respectively. The lines in
the graph are success rate of conventional hopfield model.
These are 41%(n = 8) and 29%(n = 16).

As described above, the success rate of a modular neural
network is almost the same one of Hopfield when Tcom <<
τ. On the other hand, in case of Tcom ≈ τ or Tcom ≤ τ, the
performance is predictably poor.

However, we can confirmed an increase of success rate
when Tcom ≈ 0.3 × τ. 　　　

　　　

Figure 4: Success rate as a function of Tcom by using a
Hopfield type modular neural network.

　　　

Figure 5 shows dependency of calculation speed rate on
the number of processors with 10- and 18-Queen prob-
lems. Two black filled marks indicate calculation speed
rate of a normal MPI programming, for these results, a cal-
culation speed does not increase with increasing proces-
sors because the communication cost among processors is
big. Two open marks indicate results of modular neural net-
works with Tcom = 0.3 × τ and c = 1, the calculation speed
is remarkably improved in comparison with a normal MPI
programming.

　　　

0

5

10

15

20

1 2 3 4 5 6 7 8

N=10(Moduler)
N=18(Moduler)
N=10(MPI)
N=18(MPI)

The number of processors
　　　

Figure 5: Speed rate as a function of the number of proces-
sors by using a Hopfield model.

　　　

- 725 -



4.2. ID type modular neural network

We also attempt applying an ID model network to our
proposed modular neural network. In case of an ID model
network, a relation between u and x is given by a differen-
tial equation as following,

τx
dxi

dt
= ui − g(xi), (7)

where g(x) = f −1(x) − α × (x − 0.5) and τx is a time con-
stant of output. These simulations were investigated by 4
machines system (2.8GHz PhenomII X6, 8GB memory and
Gigabit Ethernet). In this network, α is a control parame-
ter of negative resistance (please see reference [1]). Here,
8-Queen problem is used and we set parameters to achieve
100% success rate in a normal ID network. The modular
neural network is modularized by c = 1 and r = 8.

Figure 6 shows the dependency of success rate on Tcom

with various control parameter α. As results, 100% success
rate is kept with an increasing Tcom differently from a Hop-
field type modular neural network. Moreover, the range
keeping it becomes wider as α increases.

　　　

　　　

Figure 6: Success rate as a function of Tcom by using an ID
model.

　　　

Figure 7 shows the calculation speed rate as a function
of the number of processors. These circle marks indicate it
by using a normal MPI programming, the time of mutual
communication is longer than inner module calculation, so
that this speed decreases with an increasing processors. On
the other hand, a modular neural network shows a good
performance.

5. Conclusion

In this paper, we proposed a modular neural network for
achieving speed up of neural network simulations and we
could demonstrate that this way of reducing frequencies

　　　

　　　

Figure 7: Speed rate as a function of Tcom by using an ID
model.

　　　

of mutual communications among modules (processors) is
very effective.

In case of Hopfield model type modular neural networks,
when a communication time interval Tcom was about 0.3×τ,
a performance was improved. Though this phenomenon is
very interesting, the detail is future work.

On the other hand, an ID model type one could keep
100% success rate in wide range of Tcom and the speed rate
was also high.

We consider that this concept of our proposed modular
neural networks is not only used in computer simulations
but also in a multi-chip system based on a digital hardware
effectively. This subject is also future work.

Acknowledgments

This research was partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for
Scientific Research (C).

References

[1] Y. Hayakawa and K. Nakajima, “Design of the inverse
function delayed neural network for solving combi-
natorial optimization problems”, IEEE Trans. Neural
Netw., vol. 21, no. 2, pp. 224–237, 2010.

[2] T. Sota, Y. Hayakawa, S. Sato and K. Nakajima, “An
application of higher order connection to inverse func-
tion delayed network”, Nonlinear Theory and Its Ap-
plications, IEICE, vol. 2, no. 2, pp. 180–197, 2011.

[3] Peter S. Pacheco, “PALALLEL PROGRAMMING
with MPI”, Morga Kaufmann Publishers, 1997.

- 726 -




