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Abstract—In this paper, a method is proposed to
prove the existence of solutions for nonlinear ordinary
equations on an essentially bounded functional space. For
that, Affine Arithmetic extended to the functional space.
Green’s Function Expression is also used to prevent from
overestimating integral arithmetic with Affine Arithmetic.

1. Introduction

Many methods have been proposed to prove the
existence of solutions for nonlinear ordinary differential
equations. Especially, one of the authors, Oishi, proposed
a method to prove the existence of solutions for nonlinear
ordinary differential equations on a continuous functional
space. This method uses Krawczyk’s operator on a func-
tional space [1]. Krawczyk-like operator is constructed
from Newton operator using Mean Value Theorem. This
operates from an interval on a functional space to an inter-
val on a functional space. In order to calculate the image
of Krawczyk-like operator, Interval Arithmetic on the func-
tional space is used.

In this paper, the following 2 things are revised
from [1]. One is that Affine Arithmetic on functional space
is used instead of Interval Arithmetic in order to obtain
more accurate result of set arithmetic except for integral
operation. The other is that the inverse of the linearized
operator, which is needed to evaluate Krawczyk-like oper-
ator, is reformed in order to obtain more accurate result of
integral operation.

2. Preliminaries

In this section, we introduce the theorem to prove
the existence of the solution for nonlinear ordinary differ-
ential equations.

2.1. Formalization to Operator Equation

In this subsection, we formalize nonlinear ordinary
equation to an operator equation on a Banach space.

We consider the following system of first order real
differential equations:

dx(t)
dt
= f (x(t), t), (1)

where x is a n-dimensional vector valued function on [0,1],
f (x(t), t) is a n-dimensional vector valued nonlinear func-
tion.

In the following, we assume that an approximation
of the periodic solution c(t) is given for Eq. (1). We also
assume that it is a step function. Under these assumptions,
we will present a sufficient condition on which the problem
has an exact solution in a domain containing an approxi-
mate solution c(t).

Let X be the space of real valued essentially
bounded function on the interval [0, 1], let be x(t) =
(x1(t), x2(t), · · · , xn(t)) ∈ Xn, and let Xn be the Banach space
with the maximum-supremum norm

‖x‖∞ = max
1<
=

i<
=

n
sup

t∈[0,1]
|xi(t)|. (2)

In the following, ‖ · ‖ means ‖ · ‖∞. Let Y = Xn × Rn be the
Banach space with the norm

‖y‖Y = max(‖u‖, ‖v‖) for y = (u, v) ∈ Y. (3)

Let D be a subset of Xn. In the following, vectors and
matrices mean n-dimensional vectors and n × n-matrices,
respectively. We assume that the given approximate solu-
tion c(t) is an element of Xn. We now define an operator
F : D ⊂ Xn → Y by

Fx =
( dx

dt
− f (x, t), x(1) − x(0)

)

. (4)

Then we can rewrite the original problem as the following
operator equation:

Fx = 0. (5)

2.2. Existence Theorem of Solution for Eq.(5)

In this subsection, we shall introduce the existence
theorem of the periodic solution for Eq.(5).
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In the following, we assume that f : Xn → Xn is
continuously Fréchet differentiable with respect to x. The
Jacobian matrix of f with respect to x is denoted by fx(x).
Then it is easy to see that F : Xn → Y is Fréchet differ-
entiable for an element x of D and the Fréchet derivative
Fx(x) : D→ Y is given as follows:

Fx(x)h =
( dh

dt
− fx(x)h, h(1) − h(0)

)

, (6)

where h ∈ D.
For a real matrix valued step function A(t) on [0, 1]

which approximate fx(x), we define the following linear
operator

Lh =
( dh

dt
− A(t)h, h(1) − h(0)

)

. (7)

Let Φ(t) be the fundamental matrix of the linear homoge-
neous differential system

dΦ(t)
dt
= A(t)Φ(t) (8)

satisfying Φ(0) = E, where E is the unit matrix. Remark
that Φ(t) and Φ−1(t) can be obtained with guanranteed ac-
curacy using some method [3], [5].

Now we assume that L is invertible. We consider a
Newton-like operator k : Xn → Xn

k(x(t)) = x(t) − L−1F(x(t)

= L−1 (Lx(t) − F(x(t))

= L−1
((

dx(t)
dt
− A(t)x(t)

)

−

(

dx(t)
dt
− f (x(t), t)

)

,

(x(1) − x(0)) − (x(1) − x(0)))

= L−1 ( f (x(t), t) − A(t)x(t), 0) . (9)

We now introduce the following theorem.

Theorem 2.1 For a set U ⊂ Xn, if

co{k(x(t)) | x(t) ∈ U} ⊂ U (10)

and
max
x∈U
‖k′(x(t))‖ < 1 (11)

hold, there is a fixed point x∗ of k uniquely in U. □

This theorem is proved by Banach’s contraction mapping
theorem.

If we can calculate (10) and (11) by computers, we
can check whether the periodic solution of Eq. (1) exists or
not by computers.

3. Functional Affine Arithmetic

In this section, we introduce functional Affine
Arithmetic, which is extended from Affine Arithmetic [2].

Definition 3.1 Let be c(t), di(t) ∈ X (i ∈ {1, 2, · · · , n}),
−1 <= εi (i ∈ {1, 2, · · · , n + 1}) <= 1 and δ ∈ R+,0. Then the
set of functions {c(t) +

∑n
i=1 di(t)εi + δεn+1} ⊂ X is called

functional Affine Form on X. The set of functional Affine
Form is denoted byA(X). □

Definition 3.2 For a(1)(t), a(2)(t) ∈ A(X), operations

{a(1)(t) ∗ a(2)(t)|∗ ∈ {+,−,×, /}}

and
{φ(a(1)(t))|φ ∈ {sin, cos, tan, exp, log, · · ·}}

are determined as

• the result is also an functional Affine Form function

• the set described by the result holds

a(1)(t) ∗ a(2)(t) ⊃ {x(1)(t) ∗ x(2)(t)|x(1)(t) ∈

a(1)(t), x(2)(t) ∈ a(2)(t)}

and

φ(a(1)(t)) ⊃ {φ(x(1)(t))|x(1)(t) ∈ a(1)(t)},

respectively.

Let a(1)(t) and a(2)(t) be

a( j)(t) = c( j)(t) +
n

∑

i=1

d( j)
i (t)εi + δ

( j)εn+1 ( j ∈ {1, 2}).

Maximum norm of a(1)(t) is overestimated as

‖a(1)(t)‖∞ <= ‖c
(1)(t)‖∞ +

n
∑

i=1

‖d(1)
i (t)‖∞ + δ(1).

Addition and subtraction between a(1)(t) and a(2)(t)
are operated as

a(1)(t) ± a(2)(t) = c(1)(t) ± c(2)(t) +
n

∑

i=1

(d(1)
i (t) ± d(2)

i (t))εi + (δ(1)
+ δ(2))εn+1

Addition and subtraction between a(1)(t) and a func-
tion b(t) ∈ X are operated as

a(1)(t) ± b(t) = c(1)(t) ± b(t) +
n

∑

i=1

d(1)
i (t)εi + δ

(1)εn+1.

Multiplication between a(1)(t) and a(2)(t) is operated
as

a(1)(t) × a(2)(t) = c(1)(t)c(2)(t)

+

n
∑

i=1

(

c(2)(t)d(1)
i (t) + c(1)(t)d(2)

i (t)
)

εi

+















1
2

n
∑

i=1

∥

∥

∥d(1)
i (t)d(2)

i (t)
∥

∥

∥

∞

+

n
∑

j=1,i, j

n
∑

i=1

∥

∥

∥

∥

d(1)
i (t)d(2)

j (t) + d(1)
j (t)d(2)

i (t)
∥

∥

∥

∥

∞

+

∥

∥

∥a(1)(t)
∥

∥

∥

∞
δ(2)
+

∥

∥

∥a(2)(t)
∥

∥

∥

∞
δ(1)

)

εn+1
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Multiplication between a(1)(t) and a function b(t) ∈
X is operated as

a(1)(t) × b(t)

= c(1)(t)b(t) +
n

∑

i=1

b(t)d(1)
i (t)εi + ‖b(t)‖∞δ(1)εn+1.

Integration of a(1)(t) from 0 to t is overestimated as
∫ t

0
a(1)(s)ds =

∫ t

0
c(1)(s)ds +















n
∑

i=1

‖d(1)
i (s)‖ + δ(1)















εn+1,

□

Let U be an functional Affine Form U(t). Then the
lefthandside of conditions (10) and (11) are evaluated as

co{k(x(t))|x(t) ∈ U}

⊂ k(U(t))

= L−1( f (U(t), t) − A(t)U(t), 0)

and

max
x(t)∈U

‖k′(x(t))‖∞

<
= ‖k

′(U(t))‖∞
= ‖L−1( f ′(U(t), t) − A(t), 0)‖∞
<
= ‖L

−1( f ′(U(t), t) − A(t), 0)B(t)‖∞,

respectively, where B(t) is a functional Affine Form de-
scribing the unit ball

B(t) = (εn+2, · · · , ε2n+1)tr.

From this, we can revise conditions (10) and (11) as

L−1( f (U(t), t) − A(t)U(t), 0) ⊂ U(t) (12)

and
‖L−1( f ′(U(t), t) − A(t), 0)B(t)‖∞ < 1, (13)

respectively. If L−1 can be expressed explicitly, conditions
(12) and (13) can be checked.

4. Evaluating L−1

L−1(u, v) is the solution η of

Lη = (u, v)

which is equivalent to

dη(t)
dt
= A(t)η(t) + u(t),

η(1) − η(0) = v.

Let G(s, t) be Green’s Function of L, that is

dG(s, t)
dt

= A(t)G(s, t) − ∆(s, t),

G(s, 1) −G(s, 0) = 0,

where

∆(s, t) =



























δ(s − t) 0
. . .

0 δ(s − t)



























.

If E − Phi(1) is invertible, G(s, t) exists and we have

G(s, t) = Φ(t)
(

(E − Φ(1))−1 − H(s, t)
)

Φ(s),

where

H(s, t) =
{

0 (0 <= s <= t),
E (t <= s <= 1).

Using G(s, t), L−1(u, v) is described as

L−1(u, v) =
∫ 1

0
G(s, t)u(s)ds + Φ(t)(Φ(1) − E)−1v. (14)

From this, we can revise conditions (12) and (13) as
∫ 1

0
G(s, t) ( f (U(s), t) − A(s)U(s), 0) ds ⊂ U(t) (15)

and
∥

∥

∥

∥

∥

∥

∫ 1

0
G(s, t)

(

f ′ (U(s), s) − A(s), 0
)

B(s)ds

∥

∥

∥

∥

∥

∥

∞

< 1, (16)

respectively.

5. Inclusion of H(s − t)

In this section, we obtain an inclusion of H(s − t).
H(s, t) is described also as

H(s, t) =



























h(s, t) 0
. . .

0 h(s, t)



























,

where h(s, t) is Heaviside’s step function shown as

h(s − t) =
{

0 (0 <= s <= t),
1 (t <= s <= 1).

h(s, t) is included by [h(s, t), h̄(s, t)], where

h(s, t) =
1
2

(

b exp(a(s − t)) + b − 1
b exp(a(s − t)) − b + 1

+ 1
)

− b,

h̄(s, t) =
1
2

(

(1 − b) exp(a(s − t)) − b
(1 − b) exp(a(s − t)) + b

+ 1
)

+ b,
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b > 0 and a > 0. The integral of the width of this interval
diminishes for sufficient large a and for sufficient small b,
that is,

∫ 1

0
h̄(s, t) − h(s, t)ds → 0,

(a→ +∞, b→ + 0).

h(s, t) and h̄(s, t) can be obtained as the solution of equa-
tions

d2h̄(s, t)
ds2 + 2a(h̄(s, t) − (b + 0.5))

dh̄(s, t)
ds

= 0,


















h̄(0, t) =
1
2

(

(1−b) exp(−at)−b
(1−b) exp(−at)+b + 1

)

+ b,
dh̄(s,t)

ds

∣

∣

∣

∣

s=0
=

ab(1−b) exp(−at)
((1−b) exp(−at)+b)2

and

d2h(s, t)
ds2 + 2a(h(s, t) − (b + 0.5))

dh(s, t)
ds

= 0,


















h(0, t) =
1
2

(

b exp(−at)+b−1
b exp(−at)−b+1 + 1

)

− b,
dh(s,t)

ds

∣

∣

∣

∣

∣

s=0
=

ab(1−b) exp(−at)
(b exp(−at)−b+1)2 ,

respectively. Therefore, the inclusion of H(s, t) can be ob-
tained by solving these equations using some numerical
validation method [3], [5].

6. Numerical Verification

In this section, an algorithm is shown in order to
verify the unique existence of the solution of Eq.(1) from a
given approximate solution.

Algorithm 6.1 For a given approximate solution c(t), our
numerical verification algorithm is as below:

1. Obtain A(t) from c(t) and f (x(t), t) using Automatic
Differentiation.

2. Obtain inclusions of Φ(t) ,Φ−1(t) H(s, t) using some
methods

3. If E−Φ(1) is invertible, go to the next step. Otherwise,
the existence test fails.

4. Calculate f (c(t), t)−A(t)c(t) using piecewise machine
Interval Arithmetic.

5. Obtain the inclusion of k(c(t)) from Φ(t), Φ−1(t),
H(s, t) and f (c(t), t) − A(t)c(t), using (9) and (14).
[3],[5].

6. Set an functional Affine Form U(t) as

U(t) = c(t) +
n

∑

i=1

2‖k(c(t)) − c(t)‖∞εi

7. Check conditions (15) and (16) using functional
Affine Arithmetic. If these conditions hold, then we
can find a unique solution of (1) in U(t).

□

7. Numerical Example

In this section, a simple numerical example is
shown.

Let us consider the equation described as

d
dt

(

x1

x2

)

=

(

x2

−2πx2 − 4π2x3
1 + 0.6π2 cos(2πt)

)

, (17)

We obtained an approximation c(t) of periodic solution
of (17) as the 19th ordered power polynomial. By Algo-
rithm 6.1, We obtain a region U

U = c(t) + 1.863 × 10−3B

and found a unique solution for Eq.(17) in U.
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