
Validated Computation of Bessel functions

Nobito Yamamoto† and Nozomu Matsuda†

†Department of Computer Science, The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan

Email: yamamoto@im.uec.ac.jp, matsuda@sazae.im.uec.ac.jp

Abstract—We propose a method to compute Bessel
functions with guaranteed accuracy, which works on MAT-
LAB. Using multiple-precision arithmetic, the method
gives as precise results as one wants together with infor-
mation of how precise the results are. When it is sufficient
to get the results in double precision, one can use a fast
version.

1. Introduction

Both validated computation and multiple-precision have
close relationship with quality of computation. Validated
computation insures the quality, and multiple-precision im-
proves it. There are two situations in which both of them
are used together.

1. High accuracy is required, and the result should be
obtained in multiple-precision. Moreover, you want
to know which digit contains error.

2. Getting the result in a standard precision, say double
precision, the magnitude of the error is asked to be
less than several times of the machine epsilon for the
double precision. But you may have a larger error if
the calculation of the whole process is carried out in
double precision.

In the first case, validated computation tells us a bound of
the error and up to which digit can be regarded as precise.
In the second case, validated computation using enough
long digits is recommended.

We propose here a method which gives validated values
of Bessel functions together with the following features.

(1) The outputs are as accurate as the user wants.

(2) Fast calculation can be done for the outputs in double
precision.

(3) Even if the variables are interval ones, the outputs
have the features (1) and (2).

For the calculation of Bessel functions, it is a standard
way to use the recursion formula. However we donot use
it because of certain restrictions on error estimation of the
recursion. Instead the power series expansion of Bessel
function is adopted. Since the calculation of the power se-
ries causes a large amount of rounding errors, it should be

carried out with multiple-precision even for the results of
the double precision. Combining the feature (1), it can be
said that we are in both the situations 1 and 2.

The programs are written using INTLAB, an library
for interval arithmetics with validated computation which
works on Matlab.

INTLAB has built-in functions which retern results in in-
terval form with guaranteed accuracy, but they cover only
elementary functions. Special functions, e.g. Bessel func-
tion, Gamma function and so on, are not built in INTLAB.
Nevertheless special functions appear in many cases of nu-
merical computation. For example, if you want to get a
validated solution to one of Poisson equations in a circle
domain, using a numerical verification method based on the
Bessel-Fourier expansion is a considerable way. Then you
need a method which returns the values of Bessel functions
with guaranteed accuracy.

Our method supplies the following properties.

♦ The first and the second kind of Bessel functions with
integer parameters n can be evaluated with guaranteed
accuracy.

♦ If the user specifies the range of the parameter n and
the variable x, then he can use a fast version of our
method to get a result which has a bound of error up
to several times of the machine epsilon of the double
precision.

♦ If the user specifies the degree of accuracy, the method
returns a validated result of that accuracy.

♦ The derivatives can also be calculated with guaranteed
accuracy.

2. Method for Validation

Let Jn(x) and Yn(x) be the first and the second kind of
Bessel functions, respectively. When the parameter n is an
integer, Jn(x) and its derivatives have the power expansions
as follows.

Jn(x) =

∞
∑

k=0

(−1)k

k!(n + k)! (x
2)n+2k (1)

J(m)
n (x) =

∞
∑

k=s

(−1)k(n + 2k)!
2m · k!(n + k)!(n + 2k − m)! (x

2)n+2k−m.(2)

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

729

Here,
s =
{

0 (m ≤ n)
dm−n

2 e (m > n) ,
(3)

and dXe means the smallest integer which is larger than or
equal to X.

When the parameter n is negative, we have

J(m)
−n (x) = (−1)nJ(m)

n (x). (4)

Validated calculation of J(m)
n (x) (including the case m =

0) can be carried out if an upper bound of the error of trun-
cating the power expansion is given. We estimate the bound
of the truncation error as follows.

Let

dk =
(−1)k(n + 2k)!

2m · k!(n + k)!(n + 2k − m)! (x
2)n+2k−m, (5)

then

dk = −
(n + 2k)(n + 2k − 1)x2

4k(n + k)(n + 2k − m)(n + 2k − m − 1) · dk−1 (6)

holds. Put

ck =
(n + 2k)(n + 2k − 1)x2

4k(n + k)(n + 2k − m)(n + 2k − m − 1) , (7)

which appears in the right-hand side of (6). Note that

ck = x2/{4k(n + k)(1 − m
n + 2k)(1 − m

n + 2k − 1)}, (8)

then we find that the sequence {ck} is monotonously de-
creasing. Therefore there exists a positive integer K such
that

|dk| ≤ |dk−1|, ∀k ≥ K (9)
holds. For integers k larger than K, the sequence {dk} is
an alternating one with monotonously decreasing absolute
values. Then we can estimate a bound of the truncation
error by

|J(m)
n (x) −

K
∑

k=s
dk| < |dK+1| . (10)

The second kind of Bessel function Yn(x) can be evalu-
ated in a similar manner. Hereafter we describe our method
only for Jn(x) since the method for Yn(x) is almost same.

3. Using multiple-precision arithmetic

We may have a too wide interval as a result of validated
computation of Jn(x) by using the power expansion, since
summing up an alternating series causes a large amount of
rounding errors. To make the influence of the rounding
errors as small as enough, multiple-precision arithmetic is
adopted for the summation.

INTLAB has a type for multiple-precision. In our
method, the user specifies the length of digits of the vari-
able x as a variable of the multiple-precision type. One can
download the latest version of INTLAB from

http://www.ti3.tu-harburg.de/ rump/intlab/

How long digits we need is estimated as follows, for ex-
ample.

Suppose that it is asked that the relative error of Jn(x)
should be less than or around the machine epsilon of the
double precision. The enough length of the digits of dk
depends on n and x. Take K as the largest integer k which
satisfies

k < 1
2
√

n2 + x2 −
1
2n, (11)

then, from (7), the absolute value of dk takes the maximum
at k = K and so the radius of the interval value of dk is.
Thus we decide the length of the digits in order that the
radius of dK is small enough compared with the absolute
value of Jn(x). For the decimal numbers, the length of the
malti-precision variable x should be an integer larger than

log10 |
dK

ε · Jn(x) | , (12)

where ε is the machine epsilon of the double precision.
Here we need the value of Jn(x), but it does not have to be a
validated value. The built-in function in Matlab ’besselj(n,
x)’ can be used.

Our numerical experiments show that until |x| < 100 the
above strategy works well. But for larger |x|, the results
might give less precision. Therefore some trials are neces-
sary to decide the length of the digits for x in general.

4. Mean value form

Using the multiple-precision arithmetic makes the radius
of the results small enough for point values of x that are
not intervals. But when we take x as an interval, even if
the radius is very small, the relative error of Jn(x) becomes
catastrophically large. This comes from interval inflation
which is one of the properties of the interval arithmetic. To
make the interval inflation as small as possible, we adopt
an inclusion so called the mean value form.

Let f (x) be a differentiable function of x, and x is given
as an interval. Consider an interval enclosure [f (x)] such
that

f (x) ⊂ [f (x)] (13)

holds for the set f (x). We want [Jn(x)] whose radius is
small enough compared with the results obtained by the
interval extension of our method.

Suppose we have obtained an interval enclosure [f ′(x)]
for the derivative f ′(x) by a certain method. Let us take
F(x) as

F(x) = f (mid(x)) + [f ′(x)](x − mid(x)), (14)

then we call F(x) the mean value form of f (x). Here mid(x)
means the center of the interval x. The mean value theorem
shows that F(x) is an interval enclosure of f (x).

730

When the radius of x is sufficiently small, the mean value
form often gives a better result than the interval extension
of f (x).

Applying the mean value form to the computation of
Jn(x), we have

Jn(mid(x)) + [J′n(x)](x − mid(x)) . (15)

But the numerical experiments shows that it may be insuf-
ficient for some pairs of n and x. The relative error of Jn(x)
is getting larger when |n| becomes smaller and |x| becomes
larger. We have still large errors even if we apply the mean
value form once for certain small n’s and large x’s. To im-
prove the results, we apply the mean value form recursively
as follows.

Jn(mid(x)) + (J′n(mid(x)) + (J′′n (mid(x)) + (· · ·
)(x − mid(x)))(x − mid(x)))(x − mid(x)) .

The user specifies the number of the recurrence. The val-
ues of the derivatives can be computed with guaranteed ac-
curacy using multiple-precision arithmetic as is mentioned
above. Note that

|J(m)
n (x)| ≤ 1 (16)

holds for arbitrary integers n, m and an arbitrary real num-
ber x. This allows us to bound the absolute value of the
derivative of the highest degree by 1.

5. Fast version of the computation

In order to reduce CPU time, we make a table of values
of Bessel function and use Chebyshev interpolation. The
results are restricted within an accuracy corresponding to
the machine epsilon of the double precision.

Previously the user has to specify the range of the param-
eter n and the variable x. We make a table using validated
values of Bessel functions on each n and selected points of
x. For an arbitrary point (n,x) within the range, Jn(x) is
calculated by validated Chebyshev interpolation.

Chebyshev interpolation

Take m points in an interval region [a, b] as follows.

ξi =
a + b

2 +
b − a

2 cos πm (i+ 1
2), (i = 0, 1, · · · ,m− 1) .

(17)
These points are so called Chebyshev points. Define
Chebyshev polynomial by

Tk(t) = cos(k cos−1(t)). (18)

Then we have Chebyshev interpolation p(x) of a function
f (x) on [a, b] by

p(x) = 1
2c0 +

m−1
∑

k=1
ckTk(t), t = (x − a + b

2)/b − a
2 , (19)

where the coefficient ck is as follows.

ck =
2
m

m−1
∑

i=0
f (ξi) cos(2i + 1

2m kπ) . (20)

We need error esitmation of Chebyshev interpolation for
validated computation.

|| f (x) − p(x)||C[a,b] ≤
2(b − a)m

4m · m! || f
(m)(x)||C[a,b] =: E .

(21)
Here

|| f (x)||C[a,b] = max
a≤x≤b

| f (x)| . (22)

The table contains the values of ck and E for corresponding
Chebyshev points. Once we have made the table, a fast
computation of the validation can be carried out as long as
(n,x) is within the range.

When the variable x has an interval value, there occurs an
increasing of the error because of interval inflation. Thus
we have to apply the mean value form to Chebyshev inter-
polation, that is,

Jn(mid(x)) + J′n(x)(x − mid(x)) (23)

with
|J′n(x)| ≤ 1. (24)

6. Numerical experiments

We test the efficiency of multiple-precision and the mean
value form for n = 0 where the error of Jn(x) takes the
maximum.

Efficiency of multiple-precision

Table 1 shows the centers and the radii of intervals
including J0(100) with respect to the number of bits of
multiple-precision binary numbers.

Table 1. Values of J0(100) according to the digits of
multiple-precision numbers

J0(100)
center radius

92 −6.075215159834× 1018 7.673845534663× 1021

115 −1.407272878080× 1011 9.147936743096× 1014

138 1.027710000000× 105 1.258291200000× 108

161 3.491795063019× 10−2 1.300000000000× 101

184 1.998585024351× 10−2 1.668930053711× 10−6

207 1.998585030422× 10−2 1.847411112976× 10−13

230 1.998585030422× 10−2 2.032879073410× 10−20

253 1.998585030422× 10−2 2.827277484312× 10−27

276 1.998585030422× 10−2 2.648153673532× 10−34

299 1.998585030422× 10−2 4.017802956912× 10−41

731

Efficiency of the mean value form
Table 2 shows the centers and the radii of intervals in-

cluding J0(x) with respect to the number of recurrence of
the mean value form. Here x is an interval with the center
100 and the radius 0.1.

Table 2. Values of J0(x) according to recurrence of mean
value form

J0(x)
center radius

0 −5.312662293228 × 1021 3.466232109999 × 1028

1 1.998585030421 × 10−2 1.000000238419 × 10−1

2 1.998585030421 × 10−2 1.771461963654 × 10−2

3 1.998585030421 × 10−2 8.922219276428 × 10−3

4 1.998585030421 × 10−2 8.099079132080 × 10−3

5 1.998585030421 × 10−2 8.011221885681 × 10−3

6 1.998585030421 × 10−2 8.002996444702 × 10−3

7 1.998585030421 × 10−2 8.002161979675 × 10−3

8 1.998585030421 × 10−2 8.002042770386 × 10−3

9 1.998585030421 × 10−2 8.002042770386 × 10−3

10 1.998585030421 × 10−2 8.002042770386 × 10−3

We can see that 3 or 4 times of recurrence are sufficient.

Verification of the recursion formula

Bessel functions satisfy the following recursion formula.

Jn+1(x) = 2n
x Jn(x) − Jn−1(x). (25)

Let us verify this. Table 3 shows the interval values of
J0(10), J1(10), J2(10) and the result for J2(10) from the
recursion formula (denoted by rec in the tables). Table 4
gives a view of overlap between the results for J2(10).

Table 3. J2(10) and the result from the recursion formula
center radius

J0 −2.459357644513 × 10−1 1.524659305058 × 10−20

J1 4.347274616886 × 10−2 1.863472483959 × 10−20

J2 2.546303136851 × 10−1 2.202285662861 × 10−20

rec 2.546303136851 × 10−1 1.863472483959 × 10−20

Table 4. Overlap of the results for J2(10)

J2 rec
Upper 0.2546303136851206225540510

0.2546303136851206225510016 Upper
0.2546303136851206225137322 Lower

Lower 0.2546303136851206225100053

We can see that the intervals have common part, which is
necessary for validated computation.

Verification of Bessel equation

Bessel functions satisfy Bessel equations as follows.

x2J′′n (x) + xJ′n(x) + (x2 − n2)Jn(x) = 0. (26)

Table 5 shows the result of validated computation of the
left-hand side (denoted by le f t in the table), which must
include 0. Here n = 5 and x = 10.

Table 5. Verification of the Bessel equation at n = 5, x = 10

center radius
J5 −2.340615281868 × 10−1 2.202285662861 × 10−20

J′5 −1.025719220086 × 10−1 8.300922883092 × 10−20

J′′5 1.858033383410 × 10−1 3.083199928006 × 10−19

le f t −2.930733997500 × 10−19 3.309527131512 × 10−17

It is verified that the left-hand side includes 0.

Exact values up to 500 digits
The following number is the value of the derivative of

the 20th degree at n = 10, x = 30. It is calculated such
that the radius of the interval result is less than 1 × 10−500.
Therefore it has exact digits up to the 500th digit.

J(20)
10 (30) =

−0.04408716565975066518405129487074489020563124773396
01533403694651298898918939752598253719603671184461
67285134441986594501286557223523554862232244594952
55794985067576042137267431508233697738694625292790
71809762555235700764358216089188499275894953228056
31693577640601475497839027348336428192046791725548
23765359716377136051510665850259140309784035996181
56405177508849128972062709293723357776118466759811
70858993746421623901505020895513580426540355635418
87555889753125696292178735085336755307700045638901

7. Conclusion

From the numerical experiments, it can be said that our
method to compute Bessel functions with validation is ef-
fective in practice.

Our future work is to complete a library for validated
computation of Bessel functions and release it as a free
software on INTLAB.

Acknowledgments

The authors would like to thank Dr.K.Kobayashi in
Kyushu University for his fruitful suggestions.

References

[1] Oishi,S. ’Numerical computation with guaranteed ac-
curacy’(in Japanese), Korona-sha, Tokyo, 2000.

[2] Rump,S.M., INTLAB - INTerval LABoratory : De-
velopments in Reliable Computing (eds. Csendes,T.),
Kluwer Academic Publishers, 1999, 77-104.

732

