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Abstract—We consider a nonlinear fourth-order ordi-
nary differential equation on the whole real line, which
models travelling waves in a nonlinearly supported beam,
e.g. in a suspension bridge. Our aim is to prove that this
problem has at least 36 solutions, for a fixed chosen value
of the wave speed parameter.

Our proof makes heavy use of computer assistance:
Starting from numerical approximations, we use a fixed-
point argument to prove existence of solutions “close to”
the computed approximations. The main subtask to be ac-
complished in this argument is an examination of the spec-
tra of the operators arising by linearization at the computed
approximations.

1. Introduction

In the mathematical investigation of oscillations of suspen-
sion bridges, the nonlinear beam equation

uiv + c2u′′ + eu − 1 = 0 on R (1)

arises from a travelling wave ansatz u(x − ct) for a corre-
sponding wave equation; see [2, 3].

Until recently, there has been little progress on the proof
of existence of solutions of equation (1), until Smets and
van den Berg [6] showed that for almost all c in the interval
(0,
√

2), there exists at least one solution.
Here we go in a different direction to prove existence of

many homoclinic solutions of equation (1) for one fixed c,
also assuming that c ∈ (0,

√
2). We first calculate approxi-

mate solutions numerically. The next step is to verify that
there are true solutions of (1) close to each of the approx-
imate solutions. This is done by a fixed point argument
applied to the differential equation for the error function.
The result is:

Theorem 1 For c = 1.3, equation (1) has at least 36 solu-
tions.

For preparing our computer-assisted proof of Theorem
1, let H2

S (R) := {u ∈ H2(R) : u(x) = u(−x) for all x ∈ R},
endowed with the inner product 〈u, v〉H2 := 〈u′′, v′′〉L2 +

σ〈u, v〉L2 , where 〈·, ·〉L2 denotes the usual inner product in
L2(R), and σ > 0 is some constant to be specified later.

Besides H2
S (R), we will need its (topological) dual space

H−2
S (R), endowed with the canonical dual norm ‖ · ‖H−2 .

2. The Existence and Enclosure Theorem

The basis of our computational existence and multiplic-
ity proof for problem (1) is the following existence and
enclosure Theorem 2. Besides existence of a solution
u∗ ∈ H2

S (R), the theorem yields a bound for u∗ of the form

‖u∗ − ω‖H2 ≤ α, (2)

with ω ∈ H2
S (R) denoting an approximate solution com-

puted by numerical means, and with α > 0 denoting a
“small” constant provided by the theorem. Thus, with
ω1, . . . , ωk ∈ H2

S (R) denoting approximations such that,
with α1, . . . , αk denoting the error bounds given by the the-
orem,

‖ωi − ω j‖H2 > αi + α j (3)

for i, j = 1, . . . , k, i � j, our method yields the existence
of k different solutions u∗1, . . . , u

∗
k ∈ H2

S (R) and thus, the
desired multiplicity result. Note that (3) can be checked
rather directly from the numerical data.

So let ω ∈ H2
S (R) denote an approximate solution to

problem (1) obtained by numerical means. We need the
following two quantities:

(i) a bound δ ≥ 0 for the defect (residual) of ω:

‖ωiv + c2ω′′ + eω − 1‖H−2 ≤ δ, (4)

(ii) a constant K ≥ 0 such that

‖u‖H2 ≤ K ‖Lu‖H−2 for all u ∈ H2
S (R), (5)

with L : H2
S (R) → H−2

S (R) denoting the linearization
of (1) at ω:

Lu := uiv + c2u′′ + eωu, i.e.
(Lu)[ϕ] =

∫
R

(u′′ϕ′′ − c2u′ϕ′ + eωuϕ)dx. (6)

Furthermore, let ω̄ := sup
x∈R
ω(x), and Ĉ := 1

2

(
3
σ

)3/8
,

which can be shown to satisfy the embedding inequality
‖u‖∞ ≤ Ĉ ‖u‖H2 for all u ∈ H2

S (Ω).

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

722



Theorem 2 Suppose that some α ≥ 0 exists such that

δ ≤ α
K
− α2 Ĉ

2σ
exp(ω̄ + Ĉα) (7)

and

αK
Ĉ
σ

exp(ω̄ + Ĉα) < 1. (8)

Then, there exists a solution u∗ ∈ H2
S (R) of problem (1)

satisfying (2).

Sketch of Proof: The first step is to note that L :
H2

S (R) → H−2
S (R) is one-to-one and onto. Via the trans-

formation v = u − ω problem (1) is therefore equivalent
to

v = −L−1
[
eω(ev − 1 − v) + (ωiv + c2ω′′ + eω − 1)

]
=: Tv,

which amounts to a fixed-point equation for T : H2
S (R) →

H2
S (R). Let D := {v ∈ H2

S (R) : ‖v‖H2 ≤ α}, with α
satisfying (7) and (8). (4), (5), (7) and (8) imply that
T (D) ⊂ D and that T is a contraction on D, whence Ba-
nach’s Fixed Point Theorem gives a fixed point v∗ ∈ D of
T , i.e. u∗ := ω + v∗ is a solution of (1) satisfying (2).

3. Computation of K

We give a brief description how a constant K satisfying
(5) can be computed explicitly, as needed for Theorem 2.
We use analytical as well as additional computer-assisted
arguments.

With Φ : H2
S (R) → H−2

S (R) denoting the canonical iso-
metric isomorphism, we note that

‖Lu‖H−2 = ‖Φ−1Lu‖H2 for u ∈ H2
S (R), (9)

and that, by (6),

〈Φ−1Lu, v〉H2 = (Lu)[v] =
∫
R

(u′′v′′ − c2u′v′ + eωuv)dx

for u, v ∈ H2
S (R), which in particular implies that Φ−1L is

〈·, ·〉H2 -symmetric. Since Φ−1L is moreover defined on the
whole of H2

S (R), it is therefore selfadjoint (and bounded).
Thus, using (9) and the spectral decomposition of Φ−1L,
we see that (5) holds if and only if

γ := min{|λ| : λ is in the spectrum of Φ−1L} > 0, (10)

and that in the affirmative case one can choose any K ≥ 1
γ .

Thus, we have to compute a positive lower bound for γ
(proving simultaneously that (10) holds true). The first step
is to calculate the essential spectrum σess ofΦ−1L (defined
as the set of all accumulation points of the spectrum, i.e.
the spectrum except isolated eigenvalues; note that eigen-
values of infinite multiplicity cannot occur for our ODE
problem). For technical simplification, we will now assume

that the approximate solution ω has compact support. Us-
ing compact perturbation arguments, and Fourier transform
methods, we obtain that

σess =

⎡⎢⎢⎢⎢⎢⎢⎢⎣1
2

(
1 +

1
σ

)
−

√
1
4

(
1 − 1
σ

)2

+
c4

4σ
,max

{
1,

1
σ

}⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
Since besides σess only isolated eigenvalues of Φ−1L

contribute to its spectrum, we are left to compute a posi-
tive lower bound for

γ0 := min{|λ| : λ is isolated eigenvalue of Φ−1L},

the computation of which needs eigenvalue bounds ob-
tained by computer-assisted means of their own, which we
will not describe here. See [1, 4, 5] for details.

4. Numerical results

A large number of numerical solutions to problem (1)
was found using a shooting method. Starting from 40
computed shooting approximations, we applied a Newton-
collocation method to improve the quality of the approxi-
mations. In all 40 cases, the Newton iteration “converged”
within about 6 steps, with a tolerance of 10−7, to highly ac-
curate approximations ω. By the methods described above
we were able to compute the constants K satisfying (5).

The results are displayed in Table 1, as well as the com-
puted defect bounds δ, and the error bounds α provided by
Theorem 2; the crucial conditions (7) and (8) are satisfied
in 36 of the 40 cases. In the remaining 4 cases, the con-
stant K is too large, and no α satisfying (7) and (8) could
be found for the values of δ obtained within our approxi-
mation quality.

Finally, it is easy to check that condition (3) holds true.
This completes the desired existence and multiplicity re-
sult, i.e. the proof of Theorem 1.
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Table 1: Verified upper bounds for the crucial constants K, α, δ.

lower branch upper branch
Solution K δ α Morse Index K δ α Morse Index

1 1.51e+01 5.36e-08 8.05e-07 1 2.48e+01 4.21e-08 1.05e-06 1
2 6.52e+01 4.56e-08 2.97e-06 2 1.27e+02 4.40e-08 5.59e-06 3
3 1.22e+02 2.06e-08 2.50e-06 1 6.21e+01 4.62e-08 2.87e-06 2
4 3.61e+02 4.87e-08 1.76e-05 2 8.55e+02 4.41e-08 3.80e-05 3
5 8.06e+02 5.32e-08 4.33e-05 1 1.09e+02 4.02e-08 4.37e-06 2
6 2.11e+03 5.18e-08 1.18e-04 2 5.24e+03 6.53e-11 3.42e-07 3
7 5.11e+03 4.70e-08 4.33e-05 1 3.48e+02 4.33e-08 1.51e-05 2
8 3.19e+04 1.13e-10 3.72e-06 1 2.07e+03 1.62e-10 3.34e-07 2
9 7.87e+04 1.57e-10 – - 1.99e+05 5.37e-10 – -

10 3.19e+04 1.57e-10 5.21e-06 1 1.30e+04 2.62e-10 3.44e-06 2
11 1.87e+06 7.69e-11 – - 8.12e+04 3.08e-10 – -
12 9.20e+01 5.18e-08 4.77e-06 2 1.14e+02 2.65e-08 3.02e-06 3
13 1.20e+02 4.69e-08 5.62e-06 3 2.35e+02 4.40e-08 1.04e-05 4
14 2.65e+02 2.03e-08 5.35e-06 2 1.65e+02 4.47e-08 7.35e-06 3
15 7.00e+02 5.25e-08 3.71e-05 3 1.56e+03 1.67e-08 2.61e-05 4
16 3.80e+02 4.85e-08 1.85e-05 2 2.32e+02 4.62e-08 1.07e-05 3
17 1.45e+02 4.97e-08 7.16e-06 3 2.23e+02 1.65e-08 3.65e-06 4
18 1.97e+02 2.11e-08 4.16e-06 4 3.70e+02 1.73e-08 6.38e-06 5
19 4.12e+03 5.50e-08 4.16e-06 4 6.81e+03 3.34e-09 2.37e-05 5
20 2.43e+03 7.36e-08 2.02e-04 4 2.17e+02 6.38e-10 3.34e-07 5
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