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Abstract—We consider a nonlinear fourth-order ordi-
nary differential equation on the whole real line, which
models travelling waves in a nonlinearly supported beam,
e.g. in a suspension bridge. Our aim is to prove that this
problem has at least 36 solutions, for a fixed chosen value
of the wave speed parameter.

Our proof makes heavy use of computer assistance:
Starting from numerical approximations, we use a fixed-
point argument to prove existence of solutions “close to”
the computed approximations. The main subtask to be ac-
complished in this argument is an examination of the spec-
tra of the operators arising by linearization at the computed
approximations.

1. Introduction

In the mathematical investigation of oscillations of suspen-
sion bridges, the nonlinear beam equation

W+ tu +e"—1=0 on R (D)

arises from a travelling wave ansatz u(x — cf) for a corre-
sponding wave equation; see [2, 3].

Until recently, there has been little progress on the proof
of existence of solutions of equation (1), until Smets and
van den Berg [6] showed that for almost all ¢ in the interval
(0, \/5), there exists at least one solution.

Here we go in a different direction to prove existence of
many homoclinic solutions of equation (1) for one fixed c,
also assuming that ¢ € (0, V2). We first calculate approxi-
mate solutions numerically. The next step is to verify that
there are true solutions of (1) close to each of the approx-
imate solutions. This is done by a fixed point argument
applied to the differential equation for the error function.
The result is:

Theorem 1 For ¢ = 1.3, equation (1) has at least 36 solu-
tions.

For preparing our computer-assisted proof of Theorem
1, let HE(R) := {u € H*(R) : u(x) = u(—x) for all x € R},
endowed with the inner product (u,v)g2 = W’ ,v')2 +
o(u, v)2, where (-, -);2 denotes the usual inner product in
L*(R), and o > 0 is some constant to be specified later.

Besides H§ (R), we will need its (topological) dual space
HS‘Z(]R), endowed with the canonical dual norm || - ||5-2.

2. The Existence and Enclosure Theorem

The basis of our computational existence and multiplic-
ity proof for problem (1) is the following existence and
enclosure Theorem 2. Besides existence of a solution
u' e H§ (R), the theorem yields a bound for u* of the form

le* — wllge < a, 2

with w € H§ (R) denoting an approximate solution com-
puted by numerical means, and with @ > 0 denoting a
“small” constant provided by the theorem. Thus, with
wi,...,W; € H§(R) denoting approximations such that,

with @1, ..., @ denoting the error bounds given by the the-
orem,

lw; — willgz > a; + a; (3)
fori,j=1,...,k, i # j, our method yields the existence
of k different solutions uj, . ..,u,’; € H§ (R) and thus, the

desired multiplicity result. Note that (3) can be checked
rather directly from the numerical data.

So let w € Hg (R) denote an approximate solution to
problem (1) obtained by numerical means. We need the
following two quantities:

(i) abound § > O for the defect (residual) of w:
lw” + 2w’ + e = 1||y= <6, 4)
(ii) aconstant K > 0 such that

llullgz < K ||Lullg—- forall u e Hé(R), 5)

with L : H§ R) — HS‘Z(R) denoting the linearization
of (1) at w:

Lu:=u” + 2u" + e“u, ie.
(Lu)lg) = [ - Pu'¢ + e“up)dx. (6)
R
D o= ~o._ 1(3)8
Furthermore, let @ := ilelﬂgw(x), and C = 5(;) ,

which can be shown to satisfy the embedding inequality
llullo < C llullz2 for all u € HZ ().
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Theorem 2 Suppose that some a > 0 exists such that

5< — - QZ% exp(@ + Ca) (7

a
K
and

C —~
aK; exp(w + Ca) < 1. (8)

Then, there exists a solution u* € H§(R) of problem (1)
satisfying (2).

Sketch of Proof: The first step is to note that L :
Hi(R) — H;*(R) is one-to-one and onto. Via the trans-
formation v = u — w problem (1) is therefore equivalent
to

v=-L" [e“'(ev 1=+ (" + P +e* - 1)] =:Tv,

which amounts to a fixed-point equation for T : H§ R) —
H§(R). Let D = {v € Hé(R) Vg £ a), with @
satisfying (7) and (8). (4), (5), (7) and (8) imply that
T(D) c D and that T is a contraction on D, whence Ba-
nach’s Fixed Point Theorem gives a fixed point v* € D of

T,ie. u" := w+v* is a solution of (1) satisfying (2).

3. Computation of K

We give a brief description how a constant K satisfying
(5) can be computed explicitly, as needed for Theorem 2.
We use analytical as well as additional computer-assisted
arguments.

With @ : H§(R) — Hs‘z(R) denoting the canonical iso-
metric isomorphism, we note that

ILully-> = @' Lully for u € H3(R), ©)

and that, by (6),

(D' Lu, vy = (Lu)[v] = f(u"v" — WV + e“uv)dx
R

for u,v € H§ (R), which in particular implies that L is
(-, Yz-symmetric. Since ®~'L is moreover defined on the
whole of H§ (R), it is therefore selfadjoint (and bounded).
Thus, using (9) and the spectral decomposition of ®~'L,
we see that (5) holds if and only if

v :=min{|4| : 4 is in the spectrum of 'L} >0, (10)

and that in the affirmative case one can choose any K > %

Thus, we have to compute a positive lower bound for y
(proving simultaneously that (10) holds true). The first step
is to calculate the essential spectrum oegs of @ 'L (defined
as the set of all accumulation points of the spectrum, i.e.
the spectrum except isolated eigenvalues; note that eigen-
values of infinite multiplicity cannot occur for our ODE
problem). For technical simplification, we will now assume

that the approximate solution w has compact support. Us-
ing compact perturbation arguments, and Fourier transform
methods, we obtain that

lox —11+l— l1—12+imaxll
s T2 o 4 o o o)

Since besides o.ss only isolated eigenvalues of oL
contribute to its spectrum, we are left to compute a posi-
tive lower bound for

Yo := min{|4] : A is isolated eigenvalue of ®~'L},

the computation of which needs eigenvalue bounds ob-
tained by computer-assisted means of their own, which we
will not describe here. See [1, 4, 5] for details.

4. Numerical results

A large number of numerical solutions to problem (1)
was found using a shooting method. Starting from 40
computed shooting approximations, we applied a Newton-
collocation method to improve the quality of the approxi-
mations. In all 40 cases, the Newton iteration “converged”
within about 6 steps, with a tolerance of 1077, to highly ac-
curate approximations w. By the methods described above
we were able to compute the constants K satisfying (5).

The results are displayed in Table 1, as well as the com-
puted defect bounds ¢, and the error bounds @ provided by
Theorem 2; the crucial conditions (7) and (8) are satisfied
in 36 of the 40 cases. In the remaining 4 cases, the con-
stant K is too large, and no « satisfying (7) and (8) could
be found for the values of ¢ obtained within our approxi-
mation quality.

Finally, it is easy to check that condition (3) holds true.
This completes the desired existence and multiplicity re-
sult, i.e. the proof of Theorem 1.
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Table 1: Verified upper bounds for the crucial constants K, «, 9.

lower branch upper branch
Solution K 0 a | Morse Index K 1) a | Morse Index
1 1.51e+01 | 5.36e-08 | 8.05e-07 1 2.48e+01 | 4.21e-08 | 1.05e-06 1
2 6.52e+01 | 4.56e-08 | 2.97e-06 2 1.27e+02 | 4.40e-08 | 5.59e-06 3
3 1.22e+02 | 2.06e-08 | 2.50e-06 1 6.21e+01 | 4.62e-08 | 2.87e-06 2
4 3.61e+02 | 4.87e-08 | 1.76e-05 2 8.55e+02 | 4.41e-08 | 3.80e-05 3
5 8.06e+02 | 5.32e-08 | 4.33e-05 1 1.09e+02 | 4.02e-08 | 4.37e-06 2
6 2.11e+03 | 5.18e-08 | 1.18e-04 2 5.24e+03 | 6.53e-11 | 3.42e-07 3
7 5.11e+03 | 4.70e-08 | 4.33e-05 1 3.48e+02 | 4.33e-08 | 1.51e-05 2
8 3.19e+04 | 1.13e-10 | 3.72e-06 1 2.07e+03 | 1.62e-10 | 3.34e-07 2
9 7.87e+04 | 1.57e-10 - - 1.99e+05 | 5.37e-10 - -
10 3.19e+04 | 1.57e-10 | 5.21e-06 1.30e+04 | 2.62e-10 | 3.44e-06 2
11 1.87e+06 | 7.69e-11 - - 8.12e+04 | 3.08e-10 - -
12 9.20e+01 | 5.18e-08 | 4.77e-06 2 1.14e+02 | 2.65e-08 | 3.02e-06 3
13 1.20e+02 | 4.69e-08 | 5.62e-06 3 2.35e+02 | 4.40e-08 | 1.04e-05 4
14 2.65e+02 | 2.03e-08 | 5.35e-06 2 1.65e+02 | 4.47e-08 | 7.35e-06 3
15 7.00e+02 | 5.25e-08 | 3.71e-05 3 1.56e+03 | 1.67e-08 | 2.61e-05 4
16 3.80e+02 | 4.85e-08 | 1.85e-05 2 2.32e+02 | 4.62e-08 | 1.07e-05 3
17 1.45e+02 | 4.97e-08 | 7.16e-06 3 2.23e+02 | 1.65e-08 | 3.65e-06 4
18 1.97e+02 | 2.11e-08 | 4.16e-06 4 3.70e+02 | 1.73e-08 | 6.38e-06 5
19 4.12e+03 | 5.50e-08 | 4.16e-06 4 6.81e+03 | 3.34e-09 | 2.37e-05 5
20 2.43e+03 | 7.36e-08 | 2.02e-04 4 2.17e+02 | 6.38e-10 | 3.34e-07 5
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