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Abstract—In this paper, we present several re-
sults on cmputer assisted approaches for solutions
of the two-dimensional Rayleigh-Benard convection
problems. First, we will describe on a basic concept
of our numerical verification method to prove the ex-
sistence of the steady-state solutions based on the in-
finite dimensional fixed-point theorem using Newton-
like operator with the spectral approximation and the
constructive error estimates. Next, we show some ver-
ification examples of several exact non-trivial solutions
for the given Prandtl and Rayleigh numbers. Further-
more, a computer assisted proof of the existence for a
symmetry breaking bifurcation point will be presented,
which should be an important information to clarify
the global bifurcation structure. We will also consider
the extension of these results to the three dimensional
problems.

1. The Rayleigh-Bénard Problems

We consider a plane horizontal layer (see Fig.1) of an
incompressible viscous fluid heated from below. At the
lower boundary: z = 0 the layer of fluid is maintained
at temperature T + δT and the temperature of the
upper boundary (z = h) is T .
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Fig.1. Model of fluid layer

As well known, under the vanishing assumption in
y-direction, the two-dimensional (x-z) heat convection
model can be described as the following Oberbeck-
Boussinesq approximations [1, 3]:















ut + uux + wuz = −px/ρ0 + ν∆u,
wt + uwx + wwz = −(pz + gρ)/ρ0 + ν∆w,

ux + wz = 0,
θt + uθx + wθz = κ∆θ.

(1)

Here,
u, w : velocity in x and z, respectively
p : pressure
θ : temperature
ρ : fluid density
ρ0 : density at temperature T + δT
ν : kinematic viscosity
g : gravitational acceleration
κ : coefficient of thermal diffusivity
∗ξ:=∂/∂ξ(ξ = x, z, t)
∆ := ∂2/∂x2 + ∂2/∂z2.

And ρ is assumed to be represented by

ρ − ρ0 = −ρ0α(θ − T − δT ),

where α is the coefficient of thermal expansion.
The Oberbeck-Boussinesq equations (1) have the

following stationary solution:

u∗ = 0, w∗ = 0, θ∗ = T + δT − δT

h
z,

p∗ = p0 − gρ0(z +
αδT

2h
z2),

where p0 is a constant. By setting

û := u, ŵ := w, θ̂ := θ∗ − θ, p̂ := p∗ − p,

we obtain the transformed equations:














ût + ûûx + ŵûz = p̂x/ρ0 + ν∆û,

ŵt + ûŵx + ŵŵz = p̂z/ρ0 − gαθ̂ + ν∆ŵ,
ûx + ŵz = 0,

θ̂t + δT ŵ/h + ûθ̂x + ŵθ̂z = κ∆θ̂.
(2)

By further transforming to dimensionless variables:

t → κt, u → û/κ,

w → ŵ/κ, θ → θ̂h/δT, p → p̂/(ρ0κ
2)

of (2), we have the dimensionless equations:














ut + uux + wuz = px + P∆u,
wt + uwx + wwz = pz − PR θ + P∆w,

ux + wz = 0,
θt + w + uθx + wθz = ∆θ.

(3)

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

718



Here

R :=
δTαg

κνh
Rayleigh number

and
P :=

ν

κ
Prandtl number.

2. Fixed-point formulation of problem

We describe the problem concerned as a fixed point
equation of a compact map on the appropriate func-
tion space. Since we only consider the the steady-state

solutions, ut, wt and θt vanish in (3). And also assume
that all fluid motion is confined to the rectangular re-
gion Ω := {0 < x < 2π/a, 0 < z < π} for a given wave
number a > 0.

Let us impose periodic boundary condition (period
2π/a) in the horizontal direction, stress-free bound-
ary conditions (uz = w = 0) for the velocity field and
Dirichlet boundary conditions (θ = 0) for the temper-
ature field on the surfaces z = 0, π, respectively.

Furthermore, we assume the following evenness and
oddness conditions:

u(x, z) = −u(−x, z), w(x, z) = w(−x, z),

θ(x, z) = θ(−x, z).

We use the stream function Ψ satisfying

u = −Ψz , w = Ψx

so that ux + wz = 0. By some simple calculations in
(3) with setting Θ :=

√
PRθ, we obtain

{

P∆2Ψ =
√
PRΘx − Ψz∆Ψx + Ψx∆Ψz,

−∆Θ = −
√
PRΨx + ΨzΘx − ΨxΘz .

(4)
From the boundary conditions, the functions Ψ and

Θ can be assumed to have the following representa-
tions:

Ψ =

∞
∑

m=1

∞
∑

n=1

Amn sin(amx) sin(nz),

Θ =

∞
∑

m=0

∞
∑

n=1

Bmn cos(amx) sin(nz).

(5)

We now define the following function spaces for in-
tegers k ≥ 0:

Xk :=

{

∞
∑

m=1

∞
∑

n=1

Amn sin(amx) sin(nz) | Amn ∈ IR,

∞
∑

m=1

∞
∑

n=1

((am)2k + n2k)A2

mn < ∞
}

,

Y k :=

{

∞
∑

m=0

∞
∑

n=1

Bmn cos(amx) sin(nz) | Bmn ∈ IR,

∞
∑

m=0

∞
∑

n=1

((am)2k + n2k)B2

mn < ∞
}

.

In order to get the enclosure of the exact solutions
for the problem (4), we transform the concerned equa-
tion into the following fixed point form of a compact
map F on X3 × Y 1:

w = Fw. (6)

Therefore, by the Schauder fixed-point theorem, if we
find a nonempty, closed, bounded and convex set W ⊂
X3 × Y 1, satisfying

FW ⊂ W (7)

then there exists a solution of (6) in W . The set W in
(7) is referred as a candidate set of solutions. The set
W is usually constructed by computer as a direct sum
of the finite dimensional subset WN ⊂ X3

N × Y 1

N ⊂
X3 × Y 1 and its orthogonal complement W⊥

N , where
X3

N and Y 1

N are N − truncated subspace of X3 and
Y 1, respectively. By using an appropriate projection
PN : X3 × Y 1 −→ X3

N × Y 1

N , the decomposed form
PNFW ⊂ WN and (I − PN )FW ⊂ W⊥

N are verified
instead of (7), which is a sufficient condition of (6).
Furthermore, in general, a kind of Newton-type for-
mulation is utilized so that the concerning operator
has the retraction property in a neighborhood of the
solution(see, e.g., [6], [8] etc. for details).

3. Verification of bifurcating solutions

By using the Newton-like procedure similar to that
in [6], we succeeded to verify various kinds of bifurcat-
ing solutions as shown in Fig. 2. Here, RC implies the
critical Rayleigh number which equals 6.75. The verti-
cal axis stands for the absolute value of the coefficient
of the approximate solutin for Θ. And each dot in Fig.
2 means that the the exact solution corresponding to
the point was numerically verified.
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Fig.2. Verified bifurcating solutions

4. Extended System

From the observation of Fig.2, particularly around
the part enclosed by the circle, we expected that there
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should exist some secondary bifurcation. Namely, near
“the bifurcation-like point” we found the following two
different kninds of approximate solutions. For approx-
imate solutions of the form

ΨMN =

M
∑

m=1

N
∑

n=1

Amn sin(amx) sin(nz),

ΘMN =

M
∑

m=0

N
∑

n=1

Bmn cos(amx) sin(nz)

we have following two solutions satisfying

Amn = Bmn = 0, m = 1, 3, 5, 7, . . .with R = 32

and

Amn 6= 0, Bmn 6= 0, m = 1, 3, 5, 7, . . .with R = 33.

These approximate results strongly suggest that there
should exist some symmetry-breaking bifurcation
point between 32 ≤ R ≤ 33.

In order to obtain the enclosure of the bifurcation
point, we set

Z := X3 × Y 1, G := I − F

and an operator S : Z −→ Z by

Sw = S(Ψ, Θ) := (Ψ(x + π/a, z), Θ(x + π/a, z))

satisfying SGw = GSw. Using this “symmetric” op-
erator S, we have the decomposition

Z = Zs ⊕ Za,

where Zs = {w ∈ Z; Sw = w} and Za = {w ∈
Z; Sw = −w}. Next, considering R as a variable, let
G be a map on Zs × Za × IR defined by

G(w, v,R) :=





G(w,R)
DwG[w,R]v
L(v) − 1.



 (8)

Here L is an appropriate functional on Za. We tried
to prove that the extended system G(w, v,R) = 0 has
an isolated solution (w0, v0,R0) ∈ Zs ×Za × IR as well
as to verify a sufficient condition such that R0 is a
symmetry-breaking bifurcation point of G(w,R) = 0
by a computer-assisted approach using our verification
principle in the section 2.

Using a numerical verification method based on Ba-
nach’s fixed point theorem(cf.[7],[11]), we proved there
exists an isolated solution of G(w0, v0,R0) = 0. Here

R0 ∈ 32.04265510708193+ [−9.902, 9.902]× 10−10.

From the bifurcation theorem in [4], it implies that
there exists an actual bifurcation point in this interval
if

DwG[w0,R0] is invertible on Zs, (9)

which is a sufficient condition of the existence of a
symmetry-breaking bifurcation point. We actually
succeeded in the verification of the condition (9) by
using a method similar to that an eigenvalue excluding
technique in [5]. Thus, it was numerically proved that
there exists a symmetry-breaking bifurcation point in
the above interval.

5. Three Dimensional Case

For the three dimensional heat convection, more re-
alistic and interesting bifurcation phenomena are ob-
served in the actual problems in fluid mechanics(e.g.,
[10]). Our verification technique can also be extended
to this case. Of course, main difficulty comes from tha
fact that we could no longer use the formulation by the
stream function. Therefore, we have to apply the ver-
ification method directly to the original 3-dimensional
Navier-Stokes equation of the form:











1

Pu · ∇u + ∇p = ∆u + Rθ∇z,

u · ∇θ = ∆θ + w
∇ ·u = 0.

(10)

Here, u = (u, v, w) and the domain is assumed to be
a rectangle such that

0 ≤ x ≤ 2π

a
, 0 ≤ y ≤ 2π

b
, 0 ≤ z ≤ π,

where a, b are constants. Under some appropriate as-
sumptions on the boundary conditions and usual even-
or odd-ness coditions for the unknown functions, we
look for the solution to (10) of the form, for multi-
index α ≡ (l, m, n),



























































u(x, y, z) =
∑

α

uα sin alx cos bmy cos nz,

v(x, y, z) =
∑

α

vα cos alx sin bmy cos nz,

w(x, y, z) =
∑

α

wα cos alx cos bmy sin nz,

θ(x, y, z) =
∑

α

θα cos alx cos bmy sin nz,

p(x, y, z) =
∑

α

pα cos alx cos bmy cos nz.

(11)
Then the divergence free condition can be written as,
for each l, m, n,

alulmn + bmvlmn + nwlmn = 0.

Now, for 1 ≤ i ≤ 4, we define the functions φα
i by

φα
1 ≡ K0 sinalx cos bmy cos nz,

φα
2 ≡ K0 cos alx sin bmy cos nz,
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φα
3 ≡ K0 cos alx cos bmy sin nz,

φα
4
≡ K0 cos alx cos bmy cos nz,

where K0 =
2
√

2
√

|Ω|
and |Ω| is the volume of the domain

(=
4π2

ab
). Now, setting

A2

α = (al)2 + (bm)2 + n2 = B2

α + n2,

we define the new base vector fields {Φα,Ψα} as fol-
lows:

Φα = −e1

aln

AαBα

φα
1 − e2

bmn

AαBα

φα
2 + e3

Bα

Aα

φα
3 ,

Ψα =



























e1

bm

Bα

φα
1 − e2

al

Bα

φα
2 , when l, m 6= 0,

e2

bm

Aα

φα
2 + e3

n

Aα

φα
3 , when l = 0,

e1

al

Aα

φα
1 + e3

n

Aα

φα
3 , when m = 0.

Then it is seen that {Φα,Ψα} constitutes a orthogo-
nal basis of the vector field Vk which is defined similar
to (Hk(Ω))3 with divergence free condition. And the
function space T k for temperature is defined as the set
of functions represented by the series constituted from
{φα

3}.
Then a solution of the equation (10) can also be for-
mulated as a fixed point of some compact operator on
X ≡ Vk × T k. Thus, by considering the projection to
the finite dimensional subspace Xn of X as well as the
constructicve error estimates for it, we can formulate
the verification procedure for the solution of (10) to
get enclosure of bifurcating solutions for three dimen-
sional problems.

The computational results will be presented in forth-
coming paper.
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