
A Method of Generating Linear Systems with an Arbitrarily Ill-conditioned
Matrix and an Arbitrary Solution

Shinya Miyajima†, Takeshi Ogita‡,† and Shin’ichi Oishi†,‡

†Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
‡CREST, Japan Science and Technology Agency

Email: shinya miyajima@aoni.waseda.jp, {ogita,oishi}@waseda.jp

Abstract—A method of generating linear systems is
proposed for testing validity and efficiency of numerical
verification methods. Using the proposed method, condi-
tion number and the exact solution of a linear system can
arbitrarily be set by user. In this test, Rump’s method of
generating matrices with arbitrary condition number can
be utilized. Moreover the error-free vector transformation
is applied for setting the exact solution. Finally numeri-
cal examples are presented to show the usefulness of the
proposed method.

1. Introduction

In this paper, we consider generating a linear system

Ax = b, A ∈ Rn×n, b ∈ Rn (1)

whose true solution has been known in advance for testing
validity and efficiency of numerical verification methods
(cf. e.g. [3, 4]). By generating such a linear system, we can
grasp the exact error of an approximate solution of Ax = b.

The purpose of this paper is to propose a method which
generates a linear system whose coefficient matrix A ∈ Fn×n

and right-hand side vector b ∈ Fn for F denoting a set of
floating-point numbers when the dimension p (p ≤ n), an
anticipated condition number of A and a true solution for
Ax = b are set in advance. Although it does not necessarily
hold p = n, it can be expected that p ≈ n by the proposed
method. We assume that no underflow occurs.

In the proposed method, a fast and accurate dot product
algorithm [2] is applied. By this application, the proposed
method generates such a linear system using only ordinary
floating-point operations supported by hardware. Addition-
ally in this method, Rump’s method [5] which generates
a matrix with an arbitrary condition number is utilized.
By this utilization, the proposed method can also supply
a linear system whose coefficient matrix is arbitrarily ill-
conditioned. Finally numerical examples are presented to
show the usefulness of the proposed method.

2. Error-Free Vector Transformation

A fast algorithm DotK is proposed by Ogita, Rump and
Oishi, which computes accurate dot products using only or-

dinary floating-point operations supported in hardware [2,
Algorithm 5.10]. By applying DotK to p, q ∈ Fn, we can
compute s̃ ∈ F and v1, . . . , vm ∈ F, 0 ≤ m ≤ 2n−1 such that

pT q = s̃ +
m∑

i=1

vi (2)

where s̃ is an approximation of the dot product pT q and
v1, . . . , vm correspond to the error of s̃. Using DotK, we can
usually obtain sufficiently small m by the iterative process.

3. Proposed Method

In this section, we propose the method which generates a
linear system with an arbitrarily ill-conditioned matrix and
an arbitrary solution.

3.1. Concrete Steps and Properties

In this subsection, we present the concrete steps of the
proposed method and some properties of a generated linear
system.

First we present Algorithm 1 with respect to the concrete
steps of this method.

Algorithm 1 Generation of an n-dimensional linear sys-
tem Ax = b with n := p + m. Assume that an anticipated
dimension p and condition number κ ∈ F of A, and an ar-
bitrary solution x̂ = (x1, . . . , xp)T ∈ Fp which becomes the
leading p entries of x, have been set in advance.

Step 1 Generate a random matrix M ∈ Fp×p whose con-
dition number is approximately equal to κ by Rump’s
method [5].

Step 2 Compute bi ∈ F and ci1, . . . , cim ∈ F, i = 1, . . . , p
such that

M(i, 1 : p)x̂ = bi +

mi∑
j=1

ci j (3)

applying DotK. Set m = max1≤i≤n mi. If mi < m, then
set ci j = 0 for j = mi + 1, . . . ,m.

741

Bruges, Belgium, October 18-21, 2005
Theory and its Applications (NOLTA2005)

2005 International Symposium on Nonlinear



Step 3 Set A ∈ Fn×n with n = p + m as

A =
(

M −C
Omp Im

)
, C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c11 · · · c1m
...
. . .

...
cp1 · · · cpm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

where Omp denotes the m × p matrix of all zeros and
Im the m × m identity matrix. Set also x and b as

x = (x1, . . . , xp, 1, . . . , 1)T ∈ Fn (5)

and

b = (b1, . . . , bp, 1 . . . , 1)T ∈ Fn. (6)

From these we obtain a linear system Ax = b. �

By (3)–(6), it holds strictly that Ax = b. Computational
cost of Step 1 is O(p3) flops and that from Step 2 to Step
3 is O(p2)flops. Therefore computational cost of this algo-
rithm is O(p3) flops in total.

Next we present Theorem 1 with respect to the condition
number of A.

Theorem 1 Let A be defined as in (4) for a nonsingular
matrix M ∈ Rp×p. Then it holds that

condα(M) ≤ condα(A), α ≥ 1 (7)

where condα(A) := ‖A‖α · ‖A−1‖α.
Proof. For any matrix B ∈ Rm×n, it is well-known (e.g. [1,
p. 57]) that

‖B(i1 : i2, j1 : j2)‖α ≤ ‖B‖α (8)

where 1 ≤ i1 ≤ i2 ≤ m and 1 ≤ j1 ≤ j2 ≤ n. Moreover, it is
straightforward to show that

A−1 =

(
M−1 M−1C
Omp Im

)
. (9)

From (8) and (9), we obtain ‖M‖α ≤ ‖A‖α and ‖M−1‖α ≤
‖A−1‖α which proves Theorem 1. �

Finally in this subsection, we mention how large m is.
Let β ∈ N and fm ∈ N be the base number and the number
of mantissa bits of working floating-point number. Let also
b∗ = (b∗1, . . . , b

∗
n)T and fb∗i ∈ N be as b∗ := Mx̂ and the

number of figure (binary if β = 2) of b∗i . Then it holds that

m =
⌈(

max
1≤i≤n

fb∗i

)
/ fm

⌉
− 1. (10)

3.2. Scaling of Generated Linear Systems

Let κ(A) denote the condition number of A as κ(A) :=
‖A‖2 · ‖A−1‖2. Magnitude of the elements of C can become
much larger than that of M. In this case κ(A) can also be-
come much larger than the anticipated condition number κ
so that it may cause instability to solve Ax = b by Gaussian

elimination. Therefore in this subsection, we consider the
scaling of Ax = b for numerical stability.

Let D ∈ Fn×n with n = p + m be as

D = diag(1, . . . , 1, s1, . . . , sm) (11)

where

si := β−αiγ, i = 1, . . . ,m, (12)

αi :=
⌈
logβ

(
max
1≤ j≤m

ci j

)⌉
, (13)

γ := β− fm min (βδ, 1) (14)

and
δ :=

⌊
logβ ‖M‖∞

⌋
. (15)

Utilizing D we consider the following scaling of Ax = b:

Gy = h (16)

where

G := D−1AD =
(

M −CDs

Omp Im

)
, (17)

Ds := diag(s1, . . . , sm), (18)

y := D−1 x = (x1, . . . , xp,
1
s1
, . . . ,

1
sm

)T (19)

and

h := D−1b = (b1, . . . , bp,
1
s1
, . . . ,

1
sm

)T . (20)

It follows that

G−1 =

(
M−1 M−1CDs

O Im

)
. (21)

From (12)–(15) it holds approximately that

‖CDs‖α � β− fm‖M‖α ≤ 1 (22)

and
‖M−1CDs‖α ≤ ‖M−1‖α‖CDs‖α � ‖M−1‖α. (23)

Considering (17) and (21), it can be expected that ‖CDs‖α
and ‖M−1CDs‖α do not enlarge the condition number sig-
nificantly, i.e. ‖G‖α ≈ ‖M‖α and ‖G−1‖α ≈ ‖M−1‖α. There-
fore it holds approximately that κ(G) ≈ κ.

Based on the above discussions, we present Algorithm
2 with respect to the generation of Gy = h. Here, fl(·)
denotes the result of floating-point computations, where
all operations inside parentheses are executed by ordi-
nary floating-point arithmetic fulfilling rounding mode in-
struction, especially fl�(·) in round-to-nearest and fl�(·) in
round-downward.

Algorithm 2 Generation of a scaled linear system Gy = h.
Assume that A, x and b have been obtained in advance from
Algorithm 1.

742



Step 1 Compute αi, i = 1, . . . ,m from (13). Compute also
δ, γ and si, i = 1, . . . ,m as

δ =
⌊
logβ (fl� (‖M‖∞))

⌋
, (24)

γ = fl�
(
β− fm min (βδ, 1)

)
(25)

and
si = fl�

(
β−αiγ

)
. (26)

Step 2 Compute E ∈ Fp×m and t j ∈ F, j = 1, . . . ,m as

E(1 : p, j) = fl�
(
−s j · C(1 : p, j)

)
(27)

and
t j = fl�

(
1/s j

)
. (28)

Step 3 Obtain G, y and h as

G =

(
M E

Omp Im

)
, (29)

y = (x1, . . . , xp, t1, . . . , tm)T (30)

and
h = (b1, . . . , bp, t1, . . . , tm)T . (31)

From these we obtain a linear system Gy = h. �

In this algorithm, powers of β are utilized so that there is
no rounding error within the all result obtained from fl�(·).
Moreover the results of 	logβ (·)
 and �logβ (·)� is able to
be obtained by checking the exponential bits of the corre-
sponding floating-point so that there is also no rounding
error within these results. Computational cost of this algo-
rithm is O(p2) flops and it is negligible compared with that
of Algorithm 1.

4. Numerical Examples

In this section, we present numerical examples to show
the usefulness of the proposed method. Our computer en-
vironment is Pentium IV 3.4GHz CPU. We use Matlab 7.0
with ATLAS and IEEE 754 double precision for all com-
putations. In this environment β = 2 and fm = 53.

4.1. Numerical Result 1

Let p = 3, κ = 1e+14 and x̂ = (1, 1,1)T . Using Rump’s
method, we obtained

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.0184 0.1507 0.1851
0.1092 −0.0172 −0.2726
−0.4781 −0.8406 −0.1840

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
whose condition number was approximately equal to κ.

Applying DotK, it became that m = 1. b1, b2, b3 and C
were generated as

(b1, b2, b3)T = (0.3542,−0.1807,−1.5027)T

and

C = (−0.1388e-16,−0.0694e-16,−0.5551e-16)T .

Therefore we obtained

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.0184 0.1507 0.1851 0.1388e-16
0.1092 −0.0172 −0.2726 0.0694e-16
−0.4781 −0.8406 −0.1840 0.5551e-16

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

b = (0.3542,−0.1807,−1.5027, 1)T

and

x = (1, 1,1, 1)T .

Next, we executed a scaling for M based on Algorithm
2. α1 and δ were computed as α1 = −54 and δ = 1. In this
case, γ was computed as

γ = fl�
(
2−53 min (21, 1)

)
= 2−53.

Utilizing α1 and γ, s1 was computed as

s1 = fl�
(
254 · 2−53

)
= 2.

From s1, E and t1 were computed as

E = (0.2776e-16, 0.1388e-16, 1.1102e-15)T

and t1 = 0.5. From E and t1, we obtained

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.0184 0.1507 0.1851 0.2776e-16
0.1092 −0.0172 −0.2726 0.1388e-16
−0.4781 −0.8406 −0.1840 1.11102e-15

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

y = (1, 1, 1, 0.5)T ,

and

h = (0.3542,−0.1807,−1.5027, 0.5000)T .

When we solved Gy = h with iterative refinement (e.g.
[1, p.127]), we obtained a numerical solution ỹ as

ỹ = (1.0000,1.0000, 1.0000, 0.50000)T .

Applying the verification method proposed by Oishi and
Rump [3], we obtained

‖G−1h − ỹ‖∞ ≤ 7.3657e-3 =: ε.

We can confirm that the interval [ỹi − ε, ỹi + ε] includes yi

for i = 1, . . . , 4. Here, κ(A) ≈ 1.0006e+14 and κ(G) ≈
1.0006e+14. it can be seen that κ(A) ≈ κ and κ(G) ≈ κ.
These results identify Theorem 1 and the consideration in
Subsection 3.2.

743



Table 1: tR, te and te/tR for various p.

p tR te te/tR
500 6.03 0.64 0.11

1000 46.0 2.72 0.059
1500 153.1 5.84 0.038
2000 367.9 12.2 0.033

Table 2: tR, te and te/tR for various κ.

κ tR te te/tR
1e+20 11.5 0.16 0.014
1e+30 14.0 0.16 0.011
1e+40 11.3 0.16 0.014
1e+50 10.1 0.16 0.015

4.2. Numerical Result 2

We next consider computational speed of our method for
various dimensions. Let tR and te be the computing time
(sec) of Rump’s method and the other part in Algorithms 1
and 2. Table 1 displays tR, te and their ratio te/tR for various
p. Here, we set x̂ = (1, . . . , 1)T and κ = 1e+10.

It became that m = 1 for all examples in Table 1. By
Table 1, it can be seen that te/tR becomes smaller as p in-
creases. From this we can confirm that computational cost
of the part except for Rump’s method becomes relatively
smaller as p increases for fixed x̂ and κ.

4.3. Numerical Result 3

We next treated the cases for various condition numbers.
Let x̂ = (1, . . . , 1)T and p = 250. Table 2 displays tR, te and
te/tR for various κ.

It became that m = 1 for all examples in Table 2. By
Table 2, we can confirm that computational cost of Algo-
rithms 1 and 2 do not depend on κ for fixed x̂ and p.

4.4. Numerical Result 4

We finally considered the cases for varying x̂. Let p =
100 and κ = 1e+10. Table 3 displays m, tR, te, te/tR, κ(A)
and κ(G) for various x̂.

By Table 3, it can be seen that te becomes larger as the
exponential orders of the entries of x̂ disperse. The reason
is that the number of iterations in DotK increases as they
disperse.

We can confirm that m increases as the exponential or-
ders of the entries of x̂ disperse. A reason of this result is
that all entries of A were almost the same order of magni-
tude for all examples in Table 3. The result of each example
in Table 3 coincides with (10).
κ(A) became much larger than κ as the exponential orders

of the entries of x̂ disperse. The reason is that the magni-

Table 3: m, tR, te and te/tR for various x̂.

x̂ m tR te te/tR
(21, . . . , 2100) 2 0.063 0.031 0.49
(41, . . . , 4100) 4 0.063 0.062 0.98
(81, . . . , 8100) 6 0.063 0.078 1.23

(161, . . . , 16100) 8 0.062 0.094 1.52
(321, . . . , 32100) 10 0.062 0.20 3.27
(641, . . . , 64100) 12 0.063 0.28 4.46

x̂ κ(A) κ(G)
(21, . . . , 2100) 1.78e+34 1.00e+10
(41, . . . , 4100) 8.52e+71 1.00e+10
(81, . . . , 8100) 2.92e+99 1.00e+10

(161, . . . , 16100) 5.88e+129 1.00e+10
(321, . . . , 32100) 1.08e+162 1.00e+10
(641, . . . , 64100) 2.64e+194 1.00e+10

tude of the elements in C became extremely large. On the
other hand, it can be seen that κ(G) ≈ κ for all examples in
Table 3. This result identifies the consideration in Subsec-
tion 3.2 and shows the efficiency of Algorithm 2.

5. Conclusion

In this paper, we proposed the method which generates
a linear system when the dimension, condition number and
a true solution are set in advance. Finally we presented
numerical examples to show the usefulness of the proposed
method.

References

[1] G. H. Golub and C. F. van Loan, Matrix Computations,
Third edition, The Johns Hopkins University Press,
Baltimore and London, 1996.

[2] T. Ogita, S. M. Rump, S. Oishi, “Accurate Sum and
Dot Product,” SIAM J. Sci. Comp., 26:6, pp. 1955–
1988, 2005.

[3] S. Oishi and S. M. Rump, “Fast Verification of Solu-
tions of Matrix Equations,” Numer. Math., 90:4, pp.
755–773, 2002.

[4] S. M. Rump, “Verification Methods for Dense and
Sparse Systems of Equations,” Topics in Validated
Computations (J. Herzberger, ed.), Elsevier, Amster-
dam, pp. 63–135, 1994.

[5] S. M. Rump, “A Class of Arbitrarily Ill-conditioned
Floating-Point Matrices,” SIAM J. Mat. Anal. Appl.
12:4, pp. 645–653, 1991.

744


