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Abstract—Rump[1] showed that an iterated precondi2. Iterative Refinement of LU Factorization
tioning of an ill-conditioned coefficient matrix could pro-
duce a more accurate solution of a linear equation. His e assume thatl is an n by n matrix which allows the
method can be interpreted agpeoduct-form iterative re- LU factorizationA = L*U™.
finement ofinverse of a matrix. In this paper we introduce e introduce a prototype of the iterative refinement of
an additive-form iterative refinement of.U factorization |y factorization.
of an ill-conditioned matrix, in which the triangular factor odditive-form lterative Refinement of LU Factoriza-
matrices are approximated by sums of matrices with rogon (AIR-LUF): Starting with a pail( Ly, Uy) of lower-
precision entries. triangular matrix with unit diagonal elements and an invert-

ible upper-triangular matrix, generate a sequence of pairs

1 Introduction {(Lg, Ug) }k=1,2,... by the following iteration:

Step 1: Find a pair(d Ly, Uy ) of a lower-triangular matrix

It has been a common practice in numerical solution ofith zero diagonal elements and an upper-triangular matrix
asystem of linear equations to factorize the coefficient mawhich satisfy the matrix linear equation,
trix once and then proceed directly to a solution process, as
is the case with Gaussian elimination method in which the LkoUy + 6Ly Uy = Ry, (1)
backward substitution follows directly the forward elimi-
nation. When encountered with an ill-conditioned matrixVhere
we have only to accept a resulting numerical solution ac- Ry = A — LUy )
companied by such a warning statement as ‘Matrix is closgep 2: Form
to singular or badly scaled. Results may be inaccurate.’

Rump[1] advocated, however, that even a decompo- Liyy1i = Lip+46Lg 3)
sition of an ill-conditioned matrix could be utilized for Ups1 = Uk + 6Us. 4)
pre-conditioning to obtain a more accurate solution by
decomposing again the precondtioned coefficient matrix.
Employing the existing algorithms for high precision
accumulated-inner-product[3, 5], Ohta, Ogita, Rump and L6U + 6LU = R, (5)
Oishi[6] found that a repeated application of Rump’s algo-
rithm could bring about an eventual inversion of an arbitrarwhere we drop the subscript If we put
ily ill-conditioned matrix, enabling us to obtain a verified a
posteriori estimate of component-wise errors of a numeri- I = [1 0 } U= [u} * } ©6)
cal solution of the associated linear equation. - L_|’ |0 U-

With the same purpose as the cited papers, we introduce
an additive-form iterative refinement of LU factorization of SL = [0 0 } SU = {57& * } @)
an ill-conditioned matrix, in which the upper- and lower- oL_ |’ 0 oU-
triangular factor matrices are approximated by the sums gen, the equation (5) reduces to the system of equations
the same type of matrices with low precision entries.

In Section 2 and 3, we give a prototype of the iterative L_§U_+d0L_U_=R_ (8)
refinement algorithm and its mathematical analysis. In Sec-
tion 4 and 5, we give a modified version of it and its conand
vergence analysis. In Section 6, we describe a practical R —l16ut — 6liut = {O 0 ] , 9)
implementation of one of the modified version. 0 R-

For the similar iterative refinements of Cholesky- andvhere thej-th column- and the-th row-vectors of a matrix
QR-factorizations, see Tanabe[7, 8]. X are denoted respectively by andz?, the (i, j) element

The linear equation (1) has a special structure,

737



of X is denoted by:? and the subscript symbol ‘-’ indicates §Uy = V(L ' RiU; Uy (16)

that the size of the attached matrix is reduced by one. . )
. , . , 0 We can compute the solution by Egs.(15) and (16) in-
Since Eq.(9) is easily solved with respectto anddli,  gteaq of by Recursive Algorithm, but it requires about

we can solve Eq.(5) by the following recursive algorithm. 7n3 /3 arithmetic operations and is more susceptible to nu-

Recursive Algorithm : Compute the row vectors @fU  merical errors.
and column vectors af alternately by the recursion:

Step 1: Put the first row vectodu of 60 by Corollary 2: The pair(Ly1, Ux+1) of the matrices gen-

erated in Step 2 of AIR-LUF can be alternatively given by

Sul = ! (10) the formulae
_ -1 -1

wherer! is the first row vector of?. Lir1 = Li+ LkA(L_kl Rkal ) 17)
Step 2: Compute the first column vectét; of 5L by = Lip(I +A(L; ReU, ) (18)
1 = L+ LyA(L; P AU (19)
oy = U—%(Tl - 51&[1) (ll) — Lk(I—l— A(L;lAUlgl)) (20)

1 _ _
= —(n—rih), (12) Upt1 = Uy + V(L7 RUTHU, 1)
' = (I+VILIRUU (22)
whereu! andri is the(i, j) elements of/ and R respec- = V(L,'AU;"Us. (23)

tively. The first element obl, is zero and needs not be
actually computed.
Step 3: Compute the matrixR_ by

o ]

where R_ is computed by the formula (14) and the first

column and the first row vectors of the right hand side are

zero vectors, hence need not be actually computed. Ey=L;'RU = L P AU - (24)
Taking advantage of the structural similarity betweem,an we have the following lemma.

Eq.(8) and Eq.(5), we can solve Eq.(1) by recursively ap- o : o )

plying the same steps to the reduced matrides, U/ and _Lemma 3: If the initial pair(Lg, Uy) satisfies the inequal-

R_. In fact, the vectorsu', 611, 6u2, 8lo, - - -, 6u”, 0l, = '

We can computd.;, and U, either by the product-form
updating formulae (18) and (22) or by (20) and (23). If
this is the case, the method is calletbduct-form Itera-

1 1 tive Refinement of LU Factorization (PIR-LUF). It can

R —hou’ —dhu (13) be implemented conveniently in an computational environ-

= R—1ly' — sl (14) ment such as MATLAB, but is more susceptible to numer-
ical error than AIR-LUF.

Let the matrixE;, be defined by

_ —1 —1
0 are generated in this order by the recursion. 1ol = ||L0 RoUy Hoo <1 (25)
Recursive Algorithm requires abodt:®/3 arithmetic the process of AIR-LUF is well-defined and the inequality,
operations for solving Eq.(5) with dense coefficient matri- ||Ek||§o
cesL andU. 1Erk+1lloe < 41— |[Ell.) (26)
The solution of Eq.(1) is obtained by putting =  holds fork = 1,2, -, 00, where|| X |_ is the maximum
R, L = L, U = Uk,(SL = 0L, anddU = oUy in this norm of a matrixX.
algorithm. i - . - .
Corollary 4: If the initial pair (Lo, Up) satisfies the in-
equality, || Eol,, < 1 — 5—;4;)’ for a small positive num-
3. Convergence of AIR-LUF ber p, then the inequality|| Ex 1]/, < (1 — p) || Bkl
holds fork = 1,2,---,00. The monotonically decreasing

Given a square matriX(, let A(X) denote the lower
triangular matrix with zero diagonal elements, whos
nonzero elements coincides with the corresponding el@heorem 5: Under the condition|| Ey||,, < 3, the se-
ments of X and letV(X) denote the upper triangular ma- quence of pair§(Ly, Ux) }x—1.2,... generated by AIR-LUF
trix whose nonzero elements coincide with the correspondonverges quadratically toL*, U*) and satisfies the in-
ing elements of X. Note that the equality(X )+ V(X) = equalities,

X, holds and hence)\(I) = O andV(I) = I for identity o
matrix I, whereO is zero matrix. Ly, — L*|| . < ok+2 <E;oo> IZoll.. 27)

esequence{HEk||Oo}k:172,... converges to zero.

Lemma 1: The solution(é Ly, 6Uy) of the linear equation
(1) is represented by the formulae

k
E 2
Uk—U*|oos2k+2(' O'w) Ul (28)

6Ly = LyA(L;*RLUTY) (15) 2

738



4. Modified Iterative Refinement of LU Factorization Note that an analogous statement to Corollary 2 is

) ) o not possible with MAIR-LUF. Hence, there could be no
In the implementation of AIR-RUF, it is necessary to\p|R-LUF'.

form the matriced.;, andUy, which may require high pre-
cision storages throughout the iterations. We can, howevgfemma 7: The sequence generated by MAIR-LUF satis-
modifiy AIR-LUF so that the pail( Ly, Uy) of multiple-  fies the inequality,

precision matrices are represented in terms of the sum of ~ ~

of (Lo, Uo) and {(5[1]‘,6(]]')}]':1,2,..%, each of which is HRk+1||oo < COﬂd(Lk)COnd(Uk)

saved in single( or double) precision storage and the coef- R ~
ficient matrices of Eq.(1) is approximated by matriegth HL,;1 H HU,;1 H | Ryl
single-precision in a controlled manner. Before introduc- = 1 =

ing the detail of this implementation, which is described in

Section 6, we give the modicication of AIR-LUF.

Modified Additive-form Iterative Refinement of LU This lemma implies that if we choose titesign ma-

Factorization (MAIR-LUF): Starting with a pair trices [, and T, so that their condition numbers and the
(Lo, Up) of lower-triangular matrix with unit diagonal ele- orms of their inverses are uniformely bounded above by a
ments and an invertible upper-triangular matrix, generate,goderate numbed and||Ro|| is very small, then the se-

sequence(Ly, Uy) }r=1.2,... by the following iteration: quence{ Ry }r—1.2.... converges to zero matrix. So it is ex-

Step 1: Find a pair(6 Ly, 6U},) of a lower-triangular matrix Pected that MAIR-LUF has a larger region of convergence
with zero diagonal elements and an upper-triangular matrfan AIR-LUF.

+ 7k | 1Rl »

(37)
wherecond(X) = || X || HX_1||oo'

which satisfy the matrix linear equation,

.Z/k(SUk + 5Lk(~]k = Ry, (29)
where

Let the matrixE), be defined by
Ey= L 'RU = LY (A - LU)T,  (38)

then we have the following lemma.
Lemma 8: If the initial pair(Lo, Uy) satisfies the inequal-

andL; is a lower-triangular matrix with unit diagonal ele- ity,

ments andJ}, is an invertible upper-triangular matrix which

are chosen to approximatg, andUj, respectively so that

Hfi,glLk - IH <7 (31)

[ = 25°moi|_ = s mti . <
the process of MAIR-LUF is well-defined and the inequal-
ity,

2 5
B[+ am |2

< = —= (40)

where {7} is asequence of positive numbers such that 41— m,)%(1 - HEkHOO)

70 = 0and0 < 7, < 1. L, andU; will be called‘de- holds fork = 1.2. -+ - 0o

sign matrices'. )

Corollary 9: For a uniformely bounded sequenge; }
which satisfies, < 7, if the initial pair (Lo, Up) satisfies
the inequality,

Uﬁ—l—JH < T
H Kk 9 K Eii

> ||

Step 2: Form

Ly + 0Ly
Uy + 0Uy.

Ly =
1447

41-p)(1—F)2+1’
for a small positive numbep < 1, then the inequality,
HEkHH < (1=p) HEkH holds fork = 1,2, -- -, .

U1 =

HEOH <1- (41)
The solution of Eq.(29) is obtained by putting =
Ry, L = L, U = Uk,dL = 0L, and U = 46U, in
Recursive Algorithm given in Section 2. Note thiag =
Lo, Ug = Uy by the definition ofr. The monotonically decreasing sequemHé@kH Pe=1,2,-
converges to zero. >

5. Convergence of MAIR-LUF Proposition 10: Under the conditionsy, < 7 = 0.025

andHEoH = ||Lg'RoUy ||, < 3. the sequence of
o0

pairs{(Lx, Ug) }k=12,... generated by AIR-LUF converges
to (L*,U*) and satisfies the inequalities,

Lemma 6: The solution(é Ly, 6Uy) of the linear equation
(27) is represented by the formulae,

6Ly = LyA(Ly*RLUY) (35)
~ o . s+ _
oU, = V(L 'R, U YO, (36) 1Lk = L¥lloe < 75 Lol HEOHOO (42)
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< sk Step 8: Choosel, andU, and assign them:

10k = U*lle < 15 IW0llc || Bof| . @3) ‘
wheres§ = 0.9625 - - -. [La]p <= ( [Lo] + [6Lo] + [6L1] ) (49)
[Oa], <= { [Uo] + [6U0] + [6U0] ) m (50)
6. Implementation of MAIR-LUF Step 9: By putting R» = [R), Iy — [ﬂg]p and U, —

We describe storage allocation and arithmetic contral2l»: SOlve Eq.(29) with an extended precision accumu-

for the actual implementation of MAIR-LUF, in which lated inner product to obtaiid L] and[6Us].
the matricesL;, and U, are not formed explicitly. In- Step x : Continue with the similar steps in which we com-

stead, when needed, they are computed respectively as _mge the residgalﬁk with progressive multiple precisions
sums of matrice§Lo] and {[6L;]};—12..x , and [Uy] ~ Incremental withk.

and {[0U;] }j=12,.x, each of which are stored in sin-  Ajternatively we could chooséLy] = [Li](or [Lo)),
gle(or dogble) premsmn,_vyher[é(]m indicates the matrix and|[0,] = [U7](or [Uo)]), (k = (1),2,3, - --), without ac-
X stored in m-tuple precision and’| = [X7;. tually evaluating such Egs. as (49), (50), etc..

Paticular choices are made désign matrices, L;, and o i _
U, in the following algorithm. We assume that the matrix 1€ standard LU factorization yields matricesy| and
A'iis stored in single precision and that the basic computaZo] Which admit the residual estimated] — [Lo][Uo]| <
tion is executed with single-precision arithmetic. Multiple-7» |[Lol| [[Uol|, where~, = nu/(1 — nu) (Higham(3]).
precision computation is essential only for the computatiof€Nce; roughly speakinggLo| and [5U] are of the or-
of the residuaRy,, but the resultis stored in single precisionder 0f©2n [[[Lo]|| [IUo] || and the orders of the magnitude
matrix [R;,]. Matrix computation with m-tuple precision Of [0Lx] and[dUy] are rapidly decreasing dsincreases,
is denoted by(*),,, and assignment operation by . where® is defined in Lemma 7.
MAIR-LUF (p,m) Algorithm: Choosep andm suchthat ~ The author recommend that we apply a single cycle(i.e.
p < m. Typically,p=1(or2)andm =2 (or1) (Step1,2 and 3) of MAIR-LUF algorithm with = m =1
Step 1: Compute the LU factorization of the matrjd] ~ €ven if multiple-precision arithmetic is not availavble.
and put the resulting triangular matrices to be the initial
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