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Abstract—Rump[1] showed that an iterated precondi-
tioning of an ill-conditioned coefficient matrix could pro-
duce a more accurate solution of a linear equation. His
method can be interpreted as aproduct-form iterative re-
finement ofinverse of a matrix. In this paper we introduce
an additive-form iterative refinement ofLU factorization
of an ill-conditioned matrix, in which the triangular factor
matrices are approximated by sums of matrices with row
precision entries.

1. Introduction

It has been a common practice in numerical solution of
asystem of linear equations to factorize the coefficient ma-
trix once and then proceed directly to a solution process, as
is the case with Gaussian elimination method in which the
backward substitution follows directly the forward elimi-
nation. When encountered with an ill-conditioned matrix,
we have only to accept a resulting numerical solution ac-
companied by such a warning statement as ‘Matrix is close
to singular or badly scaled. Results may be inaccurate.’

Rump[1] advocated, however, that even a decompo-
sition of an ill-conditioned matrix could be utilized for
pre-conditioning to obtain a more accurate solution by
decomposing again the precondtioned coefficient matrix.
Employing the existing algorithms for high precision
accumulated-inner-product[3, 5], Ohta, Ogita, Rump and
Oishi[6] found that a repeated application of Rump’s algo-
rithm could bring about an eventual inversion of an arbitrar-
ily ill-conditioned matrix, enabling us to obtain a verified a
posteriori estimate of component-wise errors of a numeri-
cal solution of the associated linear equation.

With the same purpose as the cited papers, we introduce
an additive-form iterative refinement of LU factorization of
an ill-conditioned matrix, in which the upper- and lower-
triangular factor matrices are approximated by the sums of
the same type of matrices with low precision entries.

In Section 2 and 3, we give a prototype of the iterative
refinement algorithm and its mathematical analysis. In Sec-
tion 4 and 5, we give a modified version of it and its con-
vergence analysis. In Section 6, we describe a practical
implementation of one of the modified version.

For the similar iterative refinements of Cholesky- and
QR-factorizations, see Tanabe[7, 8].

2. Iterative Refinement of LU Factorization

We assume thatA is an n by n matrix which allows the
LU factorizationA = L∗U∗.

We introduce a prototype of the iterative refinement of
LU factorization.
Additive-form Iterative Refinement of LU Factoriza-
tion (AIR-LUF): Starting with a pair(L0, U0) of lower-
triangular matrix with unit diagonal elements and an invert-
ible upper-triangular matrix, generate a sequence of pairs
{(Lk, Uk)}k=1,2,··· by the following iteration:

Step 1: Find a pair(δLk, δUk) of a lower-triangular matrix
with zero diagonal elements and an upper-triangular matrix
which satisfy the matrix linear equation,

LkδUk + δLkUk = Rk, (1)

where
Rk ≡ A − LkUk (2)

Step 2: Form

Lk+1 = Lk + δLk (3)

Uk+1 = Uk + δUk. (4)

The linear equation (1) has a special structure,

LδU + δLU = R, (5)

where we drop the subscriptk. If weput

L ≡
[

1 0
∗ L−

]
, U ≡

[
u1

1 ∗
0 U−

]
(6)

δL ≡
[

0 0
∗ δL−

]
, δU ≡

[
δu1

1 ∗
0 δU−

]
(7)

then, the equation (5) reduces to the system of equations

L−δU− + δL−U− = R− (8)

and

R − l1δu
1 − δl1u

1 =
[

0 0
0 R−

]
, (9)

where thej-th column- and thei-th row-vectors of a matrix
X are denoted respectively byxj andxi, the(i, j) element
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of X is denoted byxi
j and the subscript symbol ‘-’ indicates

that the size of the attached matrix is reduced by one.

Since Eq.(9) is easily solved with respect toδu1 andδl1,
we can solve Eq.(5) by the following recursive algorithm.

Recursive Algorithm : Compute the row vectors ofδU
and column vectors ofδL alternately by the recursion:
Step 1: Put the first row vectorδu1 of δU by

δu1 = r1 (10)

wherer1 is the first row vector ofR.
Step 2: Compute the first column vectorδl1 of δL by

δl1 =
1
u1

1

(r1 − δu1
1l1) (11)

=
1
u1

1

(r1 − r1
1l1), (12)

whereu1
1 andr1

1 is the(i, j) elements ofU andR respec-
tively. The first element ofδl1 is zero and needs not be
actually computed.
Step 3: Compute the matrixR− by[

0 0
0 R−

]
= R − l1δu

1 − δl1u
1 (13)

= R − l1r
1 − δl1u

1 (14)

whereR− is computed by the formula (14) and the first
column and the first row vectors of the right hand side are
zero vectors, hence need not be actually computed.

Taking advantage of the structural similarity between
Eq.(8) and Eq.(5), we can solve Eq.(1) by recursively ap-
plying the same steps to the reduced matrices ,L−, U− and
R−. In fact, the vectorsδu1, δl1, δu

2, δl2, · · · , δun, δln ≡
0 are generated in this order by the recursion.

Recursive Algorithm requires about4n3/3 arithmetic
operations for solving Eq.(5) with dense coefficient matri-
cesL andU .

The solution of Eq.(1) is obtained by puttingR ≡
Rk, L ≡ Lk, U ≡ Uk, δL ≡ δLk andδU ≡ δUk in this
algorithm.

3. Convergence of AIR-LUF

Given a square matrixX, let ∆(X) denote the lower
triangular matrix with zero diagonal elements, whose
nonzero elements coincides with the corresponding ele-
ments ofX and let∇(X) denote the upper triangular ma-
trix whose nonzero elements coincide with the correspond-
ing elements of X. Note that the equality,∆(X)+∇(X) ≡
X, holds and hence,∆(I) = O and∇(I) = I for identity
matrix I, whereO is zero matrix.

Lemma 1: The solution(δLk, δUk) of the linear equation
(1) is represented by the formulae

δLk = Lk∆(L−1
k RkU−1

k ) (15)

δUk = ∇(L−1
k RkU−1

k )Uk. (16)

We can compute the solution by Eqs.(15) and (16) in-
stead of by Recursive Algorithm, but it requires about
7n3/3 arithmetic operations and is more susceptible to nu-
merical errors.

Corollary 2: The pair(Lk+1, Uk+1) of the matrices gen-
erated in Step 2 of AIR-LUF can be alternatively given by
the formulae

Lk+1 = Lk + Lk∆(L−1
k RkU−1

k ) (17)

= Lk(I + ∆(L−1
k RkU−1

k )) (18)

= Lk + Lk∆(L−1
k AU−1

k ) (19)

= Lk(I + ∆(L−1
k AU−1

k )) (20)

Uk+1 = Uk + ∇(L−1
k RkU−1

k )Uk (21)

= (I + ∇(L−1
k RkU−1

k ))Uk (22)

= ∇(L−1
k AU−1

k )Uk. (23)

We can computeLk andUk either by the product-form
updating formulae (18) and (22) or by (20) and (23). If
this is the case, the method is calledProduct-form Itera-
tive Refinement of LU Factorization (PIR-LUF). It can
be implemented conveniently in an computational environ-
ment such as MATLAB, but is more susceptible to numer-
ical error than AIR-LUF.

Let the matrixEk be defined by

Ek ≡ L−1
k RkU−1

k ≡ L−1
k AU−1

k − I, (24)

then we have the following lemma.

Lemma 3: If the initial pair(L0, U0) satisfies the inequal-
ity,

‖E0‖∞ =
∥∥L−1

0 R0U
−1
0

∥∥
∞ < 1, (25)

the process of AIR-LUF is well-defined and the inequality,

‖Ek+1‖∞ <
‖Ek‖2

∞
4(1 − ‖Ek‖∞)

(26)

holds fork = 1, 2, · · · ,∞, where‖X‖∞ is the maximum
norm of a matrixX.

Corollary 4: If the initial pair (L0, U0) satisfies the in-
equality,‖E0‖∞ < 1 − 1

5−4ρ , for a small positive num-
ber ρ, then the inequality,‖Ek+1‖∞ < (1 − ρ) ‖Ek‖∞
holds fork = 1, 2, · · · ,∞. The monotonically decreasing
sequence{‖Ek‖∞}k=1,2,··· converges to zero.

Theorem 5: Under the condition,‖E0‖∞ < 1
2 , the se-

quence of pairs{(Lk, Uk)}k=1,2,··· generated by AIR-LUF
converges quadratically to(L∗, U∗) and satisfies the in-
equalities,

‖Lk − L∗‖∞ ≤ 2k+2

(‖E0‖∞
2

)2k

‖L0‖∞ (27)

‖Uk − U∗‖∞ ≤ 2k+2

(‖E0‖∞
2

)2k

‖U0‖∞ . (28)
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4. Modified Iterative Refinement of LU Factorization

In the implementation of AIR-RUF, it is necessary to
form the matricesLk andUk, which may require high pre-
cision storages throughout the iterations. We can, however,
modifiy AIR-LUF so that the pair(Lk, Uk) of multiple-
precision matrices are represented in terms of the sum of
of (L0, U0) and {(δLj , δUj)}j=1,2,···k, each of which is
saved in single( or double) precision storage and the coef-
ficient matrices of Eq.(1) is approximated by matriceswith
single-precision in a controlled manner. Before introduc-
ing the detail of this implementation, which is described in
Section 6, we give the modicication of AIR-LUF.

Modified Additive-form Iterative Refinement of LU
Factorization (MAIR-LUF): Starting with a pair
(L0, U0) of lower-triangular matrix with unit diagonal ele-
ments and an invertible upper-triangular matrix, generate a
sequence{(Lk, Uk)}k=1,2,··· by the following iteration:

Step 1: Find a pair(δLk, δUk) of a lower-triangular matrix
with zero diagonal elements and an upper-triangular matrix
which satisfy the matrix linear equation,

L̃kδUk + δLkŨk = Rk, (29)

where
Rk ≡ A − LkUk (30)

andL̃k is a lower-triangular matrix with unit diagonal ele-
ments and̃Uk is an invertible upper-triangular matrix which
are chosen to approximateLk andUk respectively so that

∥∥∥L̃−1
k Lk − I

∥∥∥
∞

< τk (31)

∥∥∥UkŨ−1
k − I

∥∥∥
∞

< τk, (32)

where {τk} is asequence of positive numbers such that
τ0 ≡ 0 and0 ≤ τk < 1. L̃k and Ũk will be called ‘de-
sign matrices’.

Step 2: Form

Lk+1 = Lk + δLk (33)

Uk+1 = Uk + δUk. (34)

The solution of Eq.(29) is obtained by puttingR ≡
Rk, L ≡ L̃k, U ≡ Ũk, δL ≡ δLk and δU ≡ δUk in
Recursive Algorithm given in Section 2. Note thatL0 ≡
L̃0, U0 ≡ Ũ0 by the definition ofτ0.

5. Convergence of MAIR-LUF

Lemma 6: The solution(δLk, δUk) of the linear equation
(27) is represented by the formulae,

δLk = L̃k∆(L̃−1
k RkŨ−1

k ) (35)

δUk = ∇(L̃−1
k RkŨ−1

k )Ũk. (36)

Note that an analogous statement to Corollary 2 is
not possible with MAIR-LUF. Hence, there could be no
‘MPIR-LUF’.

Lemma 7: The sequence generated by MAIR-LUF satis-
fies the inequality,

‖Rk+1‖∞ ≤ cond(L̃k)cond(Ũk)



∥∥∥L̃−1
k

∥∥∥
∞

∥∥∥Ũ−1
k

∥∥∥
∞

‖Rk‖∞
4

+ τk


 ‖Rk‖∞ ,

(37)
wherecond(X) ≡ ‖X‖∞

∥∥X−1
∥∥
∞ .

This lemma implies that if we choose thedesign ma-
trices L̃k and Ũk so that their condition numbers and the
norms of their inverses are uniformely bounded above by a
moderate numberΘ and‖R0‖∞ is very small, then the se-
quence{Rk}k=1,2,··· converges to zero matrix. So it is ex-
pected that MAIR-LUF has a larger region of convergence
than AIR-LUF.

Let the matrixẼk be defined by

Ẽk ≡ L̃−1
k RkŨ−1

k ≡ L̃−1
k (A − LkUk)Ũ−1

k , (38)

then we have the following lemma.
Lemma 8: If the initial pair(L0, U0) satisfies the inequal-
ity,∥∥∥Ẽ0

∥∥∥
∞

≡
∥∥∥L̃−1

0 R0Ũ
−1
0

∥∥∥
∞

≡
∥∥L−1

0 R0U
−1
0

∥∥
∞ < 1

(39)
the process of MAIR-LUF is well-defined and the inequal-
ity,

∥∥∥Ẽk+1

∥∥∥
∞

<

∥∥∥Ẽk

∥∥∥2

∞
+ 4τk

∥∥∥Ẽk

∥∥∥
∞

4(1 − τk)2(1 −
∥∥∥Ẽk

∥∥∥
∞

)
(40)

holds fork = 1, 2, · · · ,∞.

Corollary 9: For a uniformely bounded sequence{τk}
which satisfiesτk < τ̂ , if the initial pair(L0, U0) satisfies
the inequality,

∥∥∥Ẽ0

∥∥∥
∞

< 1 − 1 + 4τ̂

4(1 − ρ)(1 − τ̂)2 + 1
, (41)

for a small positive numberρ < 1, then the inequality,∥∥∥Ẽk+1

∥∥∥
∞

< (1 − ρ)
∥∥∥Ẽk

∥∥∥
∞

holds fork = 1, 2, · · · ,∞.

The monotonically decreasing sequence{
∥∥∥Ẽk

∥∥∥
∞
}k=1,2,···

converges to zero.

Proposition 10: Under the conditions,τk < τ̂ = 0.025
and

∥∥∥Ẽ0

∥∥∥
∞

≡
∥∥L−1

0 R0U
−1
0

∥∥
∞ < 1

2 , the sequence of

pairs{(Lk, Uk)}k=1,2,··· generated by AIR-LUF converges
to (L∗, U∗) and satisfies the inequalities,

‖Lk − L∗‖∞ ≤ δk

1 − δ
‖L0‖∞

∥∥∥Ẽ0

∥∥∥
∞

, (42)
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‖Uk − U∗‖∞ ≤ δk

1 − δ
‖U0‖∞

∥∥∥Ẽ0

∥∥∥
∞

, (43)

whereδ = 0.9625 · · ·.

6. Implementation of MAIR-LUF

We describe storage allocation and arithmetic control
for the actual implementation of MAIR-LUF, in which
the matricesLk and Uk are not formed explicitly. In-
stead, when needed, they are computed respectively as the
sums of matrices[L0] and {[δLj ]}j=1,2,···k , and [U0])
and {[δUj ])}j=1,2,···k, each of which are stored in sin-
gle(or double) precision, where[X]m indicates the matrix
X stored in m-tuple precision and[X] ≡ [X]1.

Particular choices are made ofdesign matrices, L̃k and
Ũk in the following algorithm. We assume that the matrix
A is stored in single precision and that the basic computa-
tion is executed with single-precision arithmetic. Multiple-
precision computation is essential only for the computation
of the residualRk, but the result is stored in single precision
matrix [Rk]. Matrix computation∗ with m-tuple precision
is denoted by〈∗〉m and assignment operation by⇐ .

MAIR-LUF (p, m) Algorithm: Choosep andm such that
p ≤ m. Typically, p = 1 (or 2 ) andm = 2 (or 1 )
Step 1: Compute the LU factorization of the matrix[A]
and put the resulting triangular matrices to be the initial
matrices,[L0] and[U0].
Step 2: Compute the residual matrix with double precision
arithmetic and save it in a single precision storage:

[R0]m ⇐ 〈 [A] − [L0][U0] 〉m (44)

Step 3: By putting R0 = [R0]m, L̃0 = [L0] and
Ũ0 = [U0], solve Eq.(29) with an extended-precision-
accumulated-inner-product to obtain[δL0] and[δU0].
Step 4: Compute the residual matrix with triple precision
arithmetic and save it in a single precision storage:

[R1]m ⇐ 〈 [A] − [L0][U0]
− [δL0][U0] − [L0][δU0]
− [δL0][δU0]) 〉m+1 (45)

Step 5: ChooseL̃1 andŨ1 and assign them:

[L̃1]p ⇐ 〈 [L0] + [δL0] 〉m (46)

[Ũ1]p ⇐ 〈 [U0] + [δU0] 〉m (47)

Step 6: By putting R1 = [R1], L̃1 = [L̃1]p and Ũ0 =
[Ũ0]p, solve Eq.(29) with an extended precision accumu-
lated inner product to obtain[δL1] and[δU1].
Step 7: Compute the residual matrix with quadruple preci-
sion arithmetic and save it in a single precision storage:

[R2]m ⇐ 〈 [A] − [L0][U0]
− [L0][δU0] − [δL0][U0]
− [L0][δU1] − [δL0][δU0] − [δL1][U0]
− [δL0][δU1] − [δL1][δU0]
− [δL1][δU1]) 〉m+2 (48)

Step 8: ChooseL̃2 andŨ2 and assign them:

[L̃2]p ⇐ 〈 [L0] + [δL0] + [δL1] 〉m (49)

[Ũ2]p ⇐ 〈 [U0] + [δU0] + [δU0] 〉m (50)

Step 9: By putting R2 = [R2], L̃2 = [L̃2]p and Ũ2 =
[Ũ2]p, solve Eq.(29) with an extended precision accumu-
lated inner product to obtain[δL2] and[δU2].
Step � : Continue with the similar steps in which we com-
pute the residualsRk with progressive multiple precisions
incremental withk.

Alternatively we could choose[L̃k] ≡ [L̃1](or [L0]),
and[Ũk] ≡ [Ũ1](or [U0]), (k = (1), 2, 3, · · ·), without ac-
tually evaluating such Eqs. as (49), (50), etc..

The standard LU factorization yields matrices,[L0] and
[U0] which admit the residual estimate,|[A] − [L0][U0]| ≤
γn |[L0]| |[U0]| , whereγn ≡ nu/(1 − nu) (Higham[3]).
Hence, roughly speaking,[δL0] and [δU0] are of the or-
der ofΘ2γn ‖[L0]‖ ‖U0]‖ and the orders of the magnitude
of [δLk] and [δUk] are rapidly decreasing ask increases,
whereΘ is defined in Lemma 7.

The author recommend that we apply a single cycle(i.e.
(Step1,2 and 3) of MAIR-LUF algorithm withp = m = 1
even if multiple-precision arithmetic is not availavble.
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