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Abstract—Many current deterministic solvers for NP-
hard combinatorial optimization problems are based on
nonlinear relaxation techniques that use floating point
arithmetic. Occasionally, due to solving these relaxations,
rounding errors may produce erroneous results, although
the deterministic algorithm should compute the exact so-
lution in a finite number of steps. This may occur espe-
cially if the relaxations are ill-conditioned or ill-posed, and
if Slater’s constraint qualifications fail. We show how veri-
fied results can be obtained by rigorously bounding the op-
timal value of nonlinear semidefinite relaxations, even in
the ill-posed case. All rounding errors due to floating point
arithmetic are taken into account.

1. Introduction

Many algorithms in optimization require that appropri-
ate rank conditions are fulfilled and that strictly feasible
solutions of the primal and the dual problem exist; that is,
it is assumed that Slater’s constraint qualifications hold.
The algorithms terminate if residuals that measure approx-
imately the primal feasibility, the dual feasibility, and the
duality gap are sufficiently small (see for example Mittel-
mann [10]). Small residuals often provide a small back-
ward error, i.e. the computed solution is the exact solution
of a slightly perturbed problem.

Nevertheless, there are many applications where back-
ward error analysis may not be suitable. The first class
consists of ill-conditioned problems with dependencies in
the input data. The second class are ill-posed problems for
which Slater’s constraint qualifications are not fulfilled (see
Gruber and Rendl [5], and Gruber et al. [4]). For such
problems the solution does not depend continuously on the
input data, and small perturbations can result in infeasibil-
ity and/or erroneous approximations.

Ill-conditioned and ill-posed problems are not rare in
practice. In a recent paper, Ordóñez and Freund [13]
stated that 71% of the lp-instances in the NETLIB Lin-
ear Programming Library are ill-posed. This library con-
tains many industrial problems. Several problems become
ill-posed due to the modelling (for example problems with
redundant constraints, identically zero variables, and free
variables transformed to variables bounded on one side),
others appear as ill-posed relaxations in combinatorial op-
timization. Relaxations are widely used for solving difficult
combinatorial problems efficiently with branch-bound-and-

cut methods (see for example Goemans and Rendl [3]). We
want to mention that backward error analysis is not gener-
ally applicable to this class of optimization problems. This
is pointed out by Neumaier and Shcherbina [12]:

However, backward error analysis has no rele-
vance for integer linear programs with integer
coefficients, since slightly perturbed coefficients
no longer produce problems of the same class.

Moreover, they present an innocent-looking linear in-
teger problem where the commercial, high quality state-
of-the-art solvers CPLEX, BONSAIG, GLPK, XPRESS,
XPRESS-MP/INTEGER, and MINLP failed. The reason
is that the relaxations are not solved rigorously.

The major goal of this paper is to show how branch-
and-bound algorithms for combinatorial optimization prob-
lems can be made safe, even if ill-posed semidefinite re-
laxations or cuts are used. We discuss this in the example
case of Graph partitioning. Then, more general, we investi-
gate semidefinite programming problems in block diagonal
form:

f ∗p := min
n∑

j=1
〈C j, Xj〉 s.t.

n∑
j=1
〈Ai j, Xj〉 = bi, i = 1, . . . ,m

Xj � 0, j = 1, . . . , n.
(1)

where C j, Ai j, Xj ∈ S s j , the linear space of real symmetric
s j × s j matrices, and b ∈ Rm. By 〈., .〉 we denote the usual
inner product on the linear space of symmetric matrices,
which is defined as the trace of the product of two matrices.
X � 0 means that X is positive semidefinite. Hence, �
denotes the Löwner partial order on this linear space. We
assign f ∗p := +∞ if the set of feasible solutions is empty.

If s j = 1 for j = 1, . . . , n (i.e. C j, Ai j, and Xj are real
numbers), then (1) defines the standard linear programming
problem. Therefore, semidefinite programming is a nonlin-
ear extension of linear programming.

The Lagrangian dual of (1) is

f ∗d := max bT y s.t.
m∑

i=1

yiAi j � C j for j = 1, . . . , n,

(2)
where y ∈ Rm. We assign f ∗d := −∞ if the set of dual
feasible solutions is empty. The constraints

∑m
i=1 yiAi j � C j

are called linear matrix inequalities (LMI’s).
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The problems satisfy the weak duality condition

f ∗d ≤ f ∗p . (3)

Strong duality (i.e. f ∗d = f ∗p ) requires additional conditions.
It may happen that both optimal values are finite, but there
is a nonzero duality gap and an optimal solution does not
exist. Also it may happen that one optimal value is finite
and the other one is infinite. If Slater’s constrained qualifi-
cations are fulfilled, then both optimal values are finite and
strong duality is fulfilled.

We present for semidefinite programming problems a
rigorous lower bound of the primal optimal value and a rig-
orous upper bound of the dual optimal value. In most cases
the required computational effort is small compared to the
effort for computing approximate solutions. All rounding
errors due to floating point arithmetic are rigorously esti-
mated. It is of particular importance that these rigorous
bounds can be used outside the code of any imaginable
semidefinite solver as a reliable postprocessing routine.

Several presented results can be regarded as an extension
of methods for linear programming (Jansson [7] and Neu-
maier and Shcherbina [12]) and convex programming [6]
to the ill-conditioned and ill-posed case.

2. Graph Partitioning Problems

In this section we consider Graph Partitioning. These
combinatorial problems are known to be NP-hard, and find-
ing an optimal solution is difficult. Graph Partitioning has
many applications, among those is VLSI design. There are
varying branch-and-bound methods known using diverse
relaxation techniques for solving this problem.

In a branch-and-bound framework the problem is recur-
sively divided into subproblems, and each subproblem is
relaxed to an optimization problem that is easier to solve
and provides a lower bound of the optimal value for the
original subproblem. Subproblems with a lower bound
larger than the objective value of an already known fea-
sible solution cannot contain a global optimal solution and
are eliminated. Verified results in branch-and-bound are
obtained if these bounds are computed rigorously, that is
all rounding errors are regarded. The efficiency of branch-
and-bound is essentially determined by the quality of the
lower bounds. Because of the nonlinearity introduced by
the positive semidefinite cone, semidefinite relaxations pro-
vide tighter bounds for many combinatorial problems than
linear programming relaxations.

To simplify matters, we discuss here the special case of
the Equicut Problem and the semidefinite relaxations pro-
posed by Gruber and Rendl [5]. These have turned out
to deliver tight lower bounds. General Graph Partitioning
Problems can be treated similarly.

Given an edge-weighted graph G with an even number
n of vertices, the problem is to find a partitioning of the
vertices into two sets of equal cardinality which minimizes
the sum of weights ai j of the edges joining the two sets.

The algebraic formulation is obtained by representing the
partitioning as an integer vector x ∈ {−1, 1}n satisfying the
parity condition

∑
i xi = 0. Then the Equicut Problem is

equivalent to

min
∑

i< j

ai j(1 − xix j)/2 s.t. x ∈ {−1, 1}n,
n∑

i=1

xi = 0,

where A = (ai j) is the symmetric matrix of edge weights.
This follows immediately, since 1− xix j = 0 iff the vertices
i and j are in the same set. The objective can be written as

∑

i< j

ai j(1 − xix j)/2 = (xT Lx)/4,

where L := Diag(Ae) − A is the Laplace matrix of G, and
e is the vector of ones. Using xT Lx = trace(L(xxT )) and
X = xxT , it can be shown that this problem is equivalent to

f ∗p = min〈L, X〉/4
s.t. diag(X) = e, eT Xe = 0, X � 0, rank(X) = 1.

Since X � 0 and eT Xe = 0 implies X to be singular, the
problem is ill-posed, and for arbitrarily small perturbations
of the right hand side it becomes infeasible.

By definition, the Equicut Problem has a finite optimal
value f ∗p , and a rigorous upper bound of f ∗p is simply ob-
tained by evaluating the objective function for a given par-
titioning integer vector x. In order to compute a rigor-
ous lower bound, the nonlinear rank one constraint is left
out yielding an ill-posed semidefinite relaxation, where the
Slater’s condition does not hold. Assume that X = xxT is
an optimal solution, and let ỹ ∈ Rn+1. Then some compu-
tations yield

f ∗p = 〈L, X〉/4 ≥
n∑

i=1

ỹi +

n∑

i=1

λi(D)qT
i Xqi,

where the real symmetric matrix D is defined by

D := (1/4)L − Diag(ỹ1 : n) − ỹn+1(eeT ),

and λi(D) are the real eigenvalues with orthonormal eigen-
vectors qi for i = 1, · · · , n.

Since X = xxT with x ∈ {−1, 1}n satisfies λmax(X) =
n, and X is positive semidefinite it follows that the primal
boundedness qualifications 0 ≤ qT

i Xqi ≤ n for i = 1, · · · , n
are fulfilled. Hence, the second sum can be bounded from
below by

n∑

i=1

λi(D)qT
i Xqi ≥

n∑

i=1

λi(D)−n.

where λi(D)− := min(0, λi(D)). Thus, we obtain

Theorem 1 Let ỹ ∈ Rn+1, and assume that the matrix D
has at most l negative eigenvalues, and let d ≤ λmin(D).
Then

f ∗p ≥
n∑

i=1

ỹi + l · n · d− =: f ∗
p
.
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n t t1 µ( f̃ ∗d , f ∗
p
)

200 8.81 0.19 6.86788e-008
400 41.27 0.89 3.82904e-007
600 131.47 2.69 1.05772e-006

Table 1: Results for Graph Partitioning

Moreover, it can be shown that f ∗
p

is equal to the opti-

mal value of the semidefinite relaxation, provided ỹ is the
correct optimal Lagrange parameter vector (dual optimal
solution). Semidefinite solvers usually compute approxi-
mate Lagrange parameter vector, and thus approximations
ỹ close to these parameters produce a rigorous lower bound
close to the optimal value, and the overestimation is negli-
gible.

On a computer rounding errors occur, and the lower
bound f ∗

p
must be computed rigorously. Therefore, a rig-

orous lower bound of d− and an upper bound of l must be
computed, and then the sum must be evaluated in the down-
ward rounding mode. One possibility for computing d−

and l, is to calculate approximate orthonormal eigenvectors
which are stored in a matrix Q. Then, with interval arith-
metic the matrix QXQT is evaluated, and last with Ger-
shgorin’s Theorem the required bounds can be obtained.
Another possibility (which we have implemented) is an ap-
proach due to Rump [14, 15], which was used for solv-
ing rigorously sparse linear systems. Further references
for computing rigorous bounds of some or all eigenvalues
and for interval arithmetic are Alefeld and Herzberger [1],
Floudas [2], Neumaier [11].

In Table 1 we display some numerical results
for problems which are given by Gruber and Rendl
[5]. Matlab m-files can be found at http://uni-
klu.ac.at/groups/math/optimization/. For this suite of ill-
posed problems with up to 600 constraints and 180000
variables SDPT3 computes approximate lower bounds f̃ ∗d
of the optimal value. The small relative errors µ( f̃ ∗d , f ∗

p
)

show that the overestimation of the rigorous lower bound
f ∗

p
can be neglected. SDPT3 terminates with tc = 0 (nor-

mal termination) for the first two examples. Only in the
last case n = 600 the warning tc = −5: Progress too slow
is returned, but a close rigorous lower bound is computed.
Comparing the times t for computing the approximations
with SDPT3 and t1 for computing f ∗

p
with Theorem 1 one

can see that the additional time t1 for the rigorous lower
bound is small compared to the time required for the ap-
proximations.

Summarizing, Theorem 1 facilitates cheap and rigorous
lower bounds for the optimal value of graph partitioning
problems. Similar results can be obtained for Quadratic
Assignment Problems and Max Cut Problems.

3. Semidefinite Programming

In this section we describe for the semidefinite program-
ming problem (1) two basic theorems which bound rigor-
ously the optimal value. For further results about semidefi-
nite programs and proofs we refer to [8].

Theorem 2 Let X̃ j ∈ S s j for j = 1, . . . , n, and assume that
each X̃ j has at most k j negative eigenvalues. Suppose that
the following dual boundedness qualifications hold valid:

(i) Either the dual semidefinite problem is infeasible,

(ii) or f ∗d is finite, and there are simple bounds y ∈ (R+)m,
such that for every ε > 0 there exists a dual feasible
solution y(ε) satisfying

−y ≤ y(ε) ≤ y, and f ∗d − bT y(ε) ≤ ε. (4)

Let

ri = bi −
n∑

j=1

〈Ai j, X̃ j〉 for i = 1, . . . ,m, (5)

λ j ≤ λmin(X̃ j) for j = 1, . . . , n, and (6)

� j ≥ sup { λmax(C j −
m∑

i=1
yiAi j) :

−y ≤ y ≤ y, C j −
m∑

i=1
yiAi j � 0 }

(7)

for j = 1, . . . , n. Then

f ∗d ≤
n∑

j=1

〈C j, X̃ j〉 −
n∑

j=1

k jλ
−
j � j +

m∑

i=1

|ri|yi =: f
∗
d, (8)

where λ−j := min(0, λ j).

Theorem 3 Let ỹ ∈ Rm and assume that the following pri-
mal boundedness qualifications hold valid:

(i) Either the primal semidefinite problem is infeasible,

(ii) or f ∗p is finite, and there are simple bounds x ∈ (R+)n

such that for every ε > 0 there exists a primal feasible
solution (Xj(ε)) satisfying

λmax(Xj(ε)) ≤ x j for j = 1, . . . , n, (9)

and
n∑

j=1

〈C j, Xj(ε)〉 − f ∗p ≤ ε. (10)

Let

Dj = C j −
m∑

i=1

ỹiAi j, and d j ≤ λmin(Dj) for j = 1, . . . , n.

(11)
Assume that Dj has at most l j negative eigenvalues. Then

f ∗p ≥ bT ỹ +
n∑

j=1

l jd
−
j x j =: f ∗

p
. (12)
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In Theorem 2 upper bounds of the residuals |ri| are re-
quired. One possibility to calculate the residuals is to use
interval arithmetic, and taking the supremum of the com-
puted interval quantities. Perron-Frobenius theory can be
used for computing an upper bound of � j. It follows that an
appropriate upper bound is

� j = �(|C j| +
m∑

i=1

yi|Ai j|),

where � denotes the spectral radius, which can be rigor-
ously estimated by some norm. We want to mention that
the previous theory also allows to consider problems with
interval input data. Corresponding corollaries can be for-
mulated in a canonical way by using the inclusion isotonic-
ity principle of interval arithmetic.

In practice, there are frequently situations where details
of modelling a problem or the generation of input data
may not be known precisely, and may cause ill-posed prob-
lems. For example because of redundant constraints, iden-
tically zero variables, describing free variables as the dif-
ference of nonnegative variables, or replacing a vector by
its outer product as in Section 4, the constraints do not sat-
isfy Slater’s constraint qualifications, but the boundedness
of optimal solutions is not affected. Therefore, the previ-
ous theory may be used if either the user has a rough idea
about the order of magnitude of the optimal solutions, or if
he accepts that the absolute value of the optimal solutions
is not much larger than the absolute value of the computed
approximations multiplied by some positive factor, i.e., he
trusts the order of magnitude:

x j = µ · λmax(X̃ j) for j = 1, . . . , n,
and yi = µ · |ỹi| for i = 1, . . . ,m.

These bounds can be viewed as a form of a-posteriori
regularization for judging the computed approximate so-
lution of an ill-posed optimization problem. Because this
boundedness assumption is not (completely) verified, the
results are not fully rigorous. Nevertheless, this stage of
rigor is with rounding error control and we may speak of a
rounding error controlled weak verification.

Further verified results for the problems in the test suites
of optimization problems NETLIB LP and SDPLIB can be
found in [8] and [9].
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