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Abstract–  A new method  for  3D reconstruction  and
quantitative  analysis  of  cardiac  cavities  based  on
topographic  cellular  active  contour  (TCAC)  techniques
was  developed  aiming  on-line  visualization  of  cardiac
chambers.  TCAC algorithms  perform boundary  contour
tracking in video real-time speed on 2D projections taken
at  different  angles  by  an  electronically  controlled
transducer.  The  3D  view  of  the  human  heart  is
reconstructed from these contours. The whole process was
implemented  on  the  ACE-BOX  platform exploiting  the
power of CNN processors.

Performance  of  TCAC  methods  was  assessed  by
comparison with manually traced echocardiographic video
flows  by  independent  cardiologist  experts.  For  the
selected clinical examples, error of our algorithms proved
to be comparable to the inter-observer variability between
independent  experts.  Validation  of  accuracy  of  volume
quantification was performed on 60 in-vitro static objects.
The clinical potential of our system is demonstrated by 3D
reconstruction of  two cardiac  chambers  with interactive
planning of surgical interventions. 

1. Introduction
Ultrasound techniques allow direct visualization of the

heart  in  motion.  Diagnostic  algorithm  concepts  in
echocardiography changed abruptly in the last decade. It is
now  widely  recognized  that  quantitative  analysis  of
echocardiograms  is  preferable  over  qualitative
interpretation,  in  particular  for  wall  motion and volume
estimation.  However,  manual  measurements  are  time
consuming  and  suffer  from  considerable  inter-  and
intraobserver variability.

Many effort has been done to develop 3D quantitative
volumetric  imaging  methods  to  tackle  these  problems.
Active contour (AC) based methods became quite popular
for  cardiac  boundary detection  that  is  an  essential  step
before  3D  reconstruction  and  quantitative  analysis.
However,  most  AC  techniques  are  computationally
intensive that limits their application in tasks requiring fast
response,  like  real  time echocardiography.  Compared to
existing  AC  techniques  (see  e.g.  [2])  our  approaches
resolve  the  high  computational  cost  by  discretizing  the
contours and performing parallel computational operations

on each contour pixel thus keeping the efficiency of active
contour techniques with uncompromised detection speed.

Accuracy  of  boundary  detection  and  of  3D
reconstruction is a key toward clinical introduction of a
method.  To  our  best  knowledge,  applicability  of  all
published approaches is limited to the left ventricle (LV)
of the human heart. A major contribution of our work is
that our on-line 3D reconstruction environment based on
TCAC methods is not restricted to the LV.

In  the  sequel  we  shall  first  briefly  introduce  and
compare three different TCAC methods, all implemented
on  a  common  platform  and  tested  within  the  same
environment.  Then  we  present  results  from  in-vitro
validation of the system and finally 3D reconstruction of a
selected clinical example will be shown. 

2. Boundary tracking: Theory
The  task  of  TCAC  algorithms  is  to  detect  a  coherent
boundary in between the dark and light image regions, i.e.
we  have  to  find  the  boundary  between  dark  ventricles
surrounded  by  brighter  cardiac  walls  in  a  grayscale
echocardiography video flow. In our framework an active
contour evolves from its initial shape and position under
the  influence  of  external  and/or  internal  driving forces.
The external forces attract the contour to image features to
be  detected  whereas  internal  forces  can  model  the
elasticity  of  the  curve  and  balance  the  influence  of
external forces. The evolution of discrete curve points can
be implemented either by iterative or by dynamic methods.
The  main  difficulties  to  be  overcome  reside  in  the
initialization of the contour tracking and the handling of 

Figure 1. The algorithm kernel computes the evolution of
curve pixels under the influence of internal and external

driving forces. The initial contour can be obtained by
either defining it a priori or by extracting an initial feature

map obtained from the input image
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false  or  missing  features  on  the  input  image.  Once  the
contour  has  been  initialized  the  quality  and  speed  of
subsequent  contour  detections  can  be  substantially
improved  by  exploiting  the  correlation  between
consecutive  frames.  Topographic  active  contour
techniques  make  use  of  the  result  from  the  previous
iteration  which  is  used  to  initialize  the  current  contour
detection.

3. Boundary tracking: Implementations
In  the  initial  stage  –  in  all  of  our  algorithms  –

preprocessing is needed to eliminate speckle noise from
the  input  images.  Input  data  is  a  discretized,  grayscale
image taken from an ultrasound (US) video flow (or “3D
data cube”) at a specific time instance. For the first frame,
a calibrating module provides the algorithms with initial
parameters adapted to the input image under processing. It
cuts out 1D samples from the image in radial directions,
and uses a Sobel-like 1D edge detection operator on each
to  find the point  where  the  sampling line  intersects  the
cardiac contour.  It outputs the approximate position and
size of the target object with the average illumination level
of the cardiac chamber and wall. We shall now give a brief
overview  of  our  TCAC  algorithms.  For  an  in-depth
decription, see [3] and references therein.

3.1. Constrained Wave Computing
In  Constrained  Wave  Computing  the  contour  to  be

detected is the steady contour of a dynamic wave initiated
from patches called sources. The evolution of the dynamic
wave can be stopped using a grayscale spatial constraint
calculated from the input image(s). Where wall segments
are missing on the US image, proper spatial constraint or
external  force  cannot  be  generated  to  stop  the  wave
propagation. However, a properly chosen time-constraint
can always be applied and thus a solution will be obtained
in a non-equilibrium state of the network. In summary, in
the case of CWC the task to be solved should be converted
into adequate spatio-temporal constraints. 

3.2. Pixel Level Snakes
In  contrast  to  CWC,  the  Pixel  Level  Snakes  method

solves  the  contour  tracking  task  in  an  iterative  fashion
using topographic cellular operations. 
The  contour  evolution  is  based  on  binary  and  local
morphological  operations  which  perform  a  directional
contour  expansion  of  the  active  contour  followed  by  a
directional  contour  thinning  along  the  four  cardinal
directions.  These  operations  are  driven  by  guiding
information extracted from the image being processed as
external forces and from the contour itself as internal and
balloon forces.
The  external  potential  is  derived  from the  input  image
features to establish a map of external forces. The contour
will  evolve in those directions where the potential  field
decreases.  This  external  potential  should  be  defined  in
such a way that its valleys coincide with the boundaries of
the region of interest. This step is strongly dependent on
the  particular  application  PLS  is  used  to  solve  and

therefore represents an external input to the algorithm.
The internal potential is derived directly from the active
contour itself. It represents a curvature dependent control
over  the  evolution  of  the  active  contour  to  ensure  its
appropriate,  application  dependent  smoothness  level.  In
the guiding force extraction (GFE) module, a directional
gradient  operation  on  the  resulting  image  will  then
originate  positive  internal  forces  that  will  reduce  local
curvature or – in other words – smooth the contour shape.
Due  to  the  inherent  nature  of  curvature  driven  internal
forces the contour has a shrinking tendency. To counteract
this  issue  along  with  the  necessity  to  trespass  spurious
isolated  weak image edges  an  additional  inflating force
field called balloon force is introduced. 
In the end, by summing the weighted external, internal and
inflating potentials we obtain the global potential field on
which  a  directional  gradient  operation  is  performed  to
serve the GFE module. In a pixel-level iterative technique
only  the  sign  of  the  guiding  forces  along  the  direction
under  exploration  is  actually  needed.  The  GFE module
creates  a  binary  map  with  activated  pixels  in  those
locations  where  the  potential  is  decreasing  along  the
direction  under  study.  Thus  the  contour  evolution  is
allowed where this map contains activated pixels.

3.3. Moving Patch Method
This topographic active contour algorithm works on a

“patch  image”,  which  initially  contains  a  black  patch
acquired from the system-level calibration module. It also
uses  a  “control  image”,  which  might  contain  the  raw
echocardiographic  video  frame  itself,  or  an  image
preprocessed with the MaxShadow algorithm (see [3] for
details).

This algorithm is iterative like the PLS, but it  differs
from PLS in that it uses a filled black-and-white patch to
represent the contour, so the inner and outer side of the
contour is unambiguous even if we look at only the local
neighborhood of the contour pixels. The patch image will
be modified in each iteration under the guidance of local
rules  operating on 3x3 neighborhoods  of  the  patch and
control  image,  until  the  patch  fits  the  endocardial
boundary.

The contour evolution has two kinds of constraints: the
internal  constraints  are related only to  the patch image,
responsible for the well-formedness of the patch; and the
external constraints, which use the features of the control
image. In each iteration, many decisions are made for each
pixel of the patch image, and the result of these decisions
is the new value of that pixel.

The internal constraints have the form of HitAndMiss
masks. First the “must be black” masks are checked: these
masks set  those pixels  of the patch image black,  which
have a neighborhood of more than four black pixels. This
rule ensures that the patch will not contain singular white
pixels,  and  also  fills  up  the  deeper  concavities  of  the
contour.  Since cardiac chambers are mostly convex, the
surface tension imposed by this  rule  smooths  out  small
errors of the contour.
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Next the “valid black” masks are checked: these select
those pixels, which have exactly three neighboring black
pixels, and these pixels are adjacent to each other. Only
these pixels are subject to the external constraint checking:
these  are  the  pixels  where  the  contour  can  expand  or
shrink. All other pixels, selected neither by the “must be
black”, nor the “valid black” masks are turned to white:
this eliminates singular black pixels disconnected from the
main patch.
Pixels where the contour is allowed to expand or shrink
will be checked against global threshold values. The pixels
of the control image where the patch image is allowed to
move,  are  checked  whether  they fall  below or  above a
lower  and  higher  global  threshold  level,  and  they  are
turned black or white, respectively. These thresholds are
responsible for the unconditional expansion or shrinking
of  the  contour  in  regions  belonging  unequivocally  to
chambers or myocardium.
For  the  remaining  pixels,  the  algorithm  calculates  the
average grayscale level of the neighboring pixels on the
control image corresponding to the “black” and “white”
pixels in the patch image, respectively. If  the difference
between  these  “white”  and  “black”  average  values  is
below a local difference threshold, it turns the pixel white,
otherwise to black.
This last step is the essential contour detection step. By
computing the intensity difference between the inner and
outer side of the contour, the algorithm approximates the
component of the local gradient which is orthogonal to the
contour. The contour is expanding if the intensity gradient
is greater than a local difference threshold, and shrinking
when it is less. In other words, if we approach the cardiac
wall  from  inside  the  cardiac  chamber,  we  will  see  a
gradual  increase in the average intensity,  until  we reach
the intensity plateau of the cardiac wall. This change of
gradient amplitude is detected by this approach.

4.  Boundary  tracking  using  TCAC  methods:
Comparison
Table  1 shows  major  theoretical  and  implementational
aspects of our TCAC algorithms. Note that a priori motion
information between current and previous and eventually
the between the next frame is only exploited in CWC. This
information could be important in several cases when false
edges appear in the frame sequence. PLS differs from the
other  methods  representing the  active  contour  explicitly
compared  to  CWC and MPM which detect  contours  in
each iteration starting from a kernel. 
PLS and MPM have an inherent capability to deflate the
contour  or  let  parts  of  the  contour  move  inwards.  In
contrast, CWC is an expansive method but it can handle
inward  moving  contour  segments  by  shrinking  the
previous result to obtain the kernel for the current frame. 
When speaking about performance and quality issues, we
have  to  keep  in  mind  that  it  is  extremely  difficult  to
quantitatively  compare  two  different  active  contour
algorithms. We went as far as possible in implementing the
three  algorithms  in  a  common  framework.  Current
analogic  architectures  (we  have  worked  mainly  on  the

ACE4k  chip  [4]  and  also  on  the  ACE16k  chip  [5]
embedded within the ACE-BOX environment) provide a
fixed  complexity  reproducible  CNN computing  (nearest
neighbor computing with linear CNN templates). The PLS
core is using linear uncoupled CNN templates and shows
impressing detection speed (25 fps) and accuracy running
on the ACE4k chip. The full version of MPM is currently
implemented  using  non-linear  uncoupled  operations
running  on  the  DSP  platform  of  the  ACE-BOX
architecture.  MPM  is  the  most  robust  method  at  the
expense  of  currently  running  only  at  22  fps  with  non-
topographic  optimizations.  Note  that  PLS  is  a  general
technique  whereas  MPM  with  MaxShadow  implements
various  echocardiography-specific  heuristics.  CWC is  a
dynamic  method  using  linear  coupled  CNN  templates.
CWC was implemented on the ACE16k platform and uses
only 1.3 ms per frame for all the template operations. 

CWC PLS MPM

Information
exchange in

space

acausal
cellular
nearest

neighbor

acausal
cellular
nearest

neighbor

acausal
cellular
nearest

neighbor

Information
exchange in

time

acausal
recursive
nearest
frame

causal
recursive
nearest
frame

causal
recursive
nearest
frame

Contour
representation

implicit,
region prop.

explicit,
curve prop.

implicit,
region prop.

Contour
localization
technique

expansive expansive /
contractive

expansive /
contractive

Computation
method

PDE related “energy”
related

rule based

Implementati
on

Dynamic Iterative Iterative

Minimal
complexity of

CNN
formulation

Linear
coupled

Linear
coupled

Non-linear
uncoupled

ACE-BOX
implementati

on

Complete,
Ace16k

Complete,
Ace4k

Complete,
DSP

Table 1 Major theoretical and implementational aspects
of our TCAC algorithms

4.1. Quality assessment of TCAC methods
In order to validate the quality of TCAC algorithms we
used a database containing more than 1000 video flows of
clinical data from which around 600 flows have reference,
manually  traced  by  cardiologist  experts.  For  6  video-
flows, four independent experts have manually traced the
endocardial  boundary.  In  those  cases  where  four
references were available we calculated a common mean
or  “golden-standard”  reference  using  a  topographic
approach, described in detail in [3]. 
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5. 3D reconstruction
Analysis  of  2D  slices  (filtering,  segmentation,  contour
tracking  and  content/context  based  recognition)  was
designed  as  a  set  of  analogic  CNN-UM  algorithms.
Contours  are  adaptively  resampled,  then  rotated  and
translated into the 3D space on the DSP.

From this  dataset,  the 3D reconstruction module first
produces a polygon based model in real-time that allows a
dynamic  feedback  to  contour  tracking  in  order  to
adaptively  correct  the  errors  introduced  in  that  phase.
Then the on-line renderer engine computes the final 3D
model (see Figure  2) using metaball algorithm [6] when
data for all chambers of interest have been processed by
the boundary tracking module. 3D diagnostic information
e.g.  cavity  volumes  are  obtained  directly  from the  3D
geometrical model. 

Figure 2. 3D reconstruction of two atria of a human heart

6. Validation
We  validated  the  accuracy  of  our  on-line  3D

echocardiography  system  using  static  in  vitro  dummy
objects.  60  rubber  balloons  with  diverse  geometry,
simulating  a  heart  cavity  have  been  filled  with  water,
sealed and placed in water bath (60, 100 and 250 ml, 20
pieces of each volume). The inner boundary detection of
each object was performed using PLS algorithm. Statistics
of reconstruced volumes can be seen on Table 2.

Volume of phantoms (ml) 60.00 100.00 120.00

Mean of 20 samples 59.26 101.56 248.04

Standard dev. of samples 2.82 4.21 4.93

Table 2 Result of validation measurements

7. Discussion and conclusions
The  major  result  of  this  study  is  to  bring  real-time

TCAC  based  on-line  3D  reconstruction  system  into
clinical test phase.
When comparing results of boundary detection methods to
the  inter-observer  variability  between  hand-traced
contours produced by different  cardiologist  experts,  one
can  hardly  draw a  clear  conclusion.  For  some selected
examples,  error  between  the  output  of  our  TCAC
algorithms and the expert-traced reference is  in average
around  10%.  For  the  selected  examples  this  is  a  good

achievement since it is very slightly higher than the error
between  two  references  traced  by  two  independent
experts.

Since all curves are similar it is important to keep in
mind  that  balancing  speed  requirement  for  real-time
echocardiography with keeping hardware complexity at an
affordable  level  to  allow  future  industrial  production
cannot be done without relaxing our expectations towards
the exact fitting of our results to expert traced contours.
The novel visualisation technique of our system includes
geometry  independent  quantitative  measurements  of  the
heart  cavities.  Currently  available  quantitative  imaging
methods  are  either  more  invasive  and  involve  radiation
exposure such as angiography, CT and MRI or they cannot
be properly applied to assymetric cavities such as atria or
the right ventricle. Each available method having different
degree of reliablility and currently there is no obligatory
gold  standard  for  the  volumetry  of  assymetric  heart
cavities [7].
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