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Abstract—Action-oriented perception involves com-

plex tasks to be fulfilled in real time. In fact living be-

ings, even the most simple, suitably integrate afferent stim-

uli, create an abstract, concise representation of environ-

ment stimuli and choose it for action-selection purposes.

We propose a novel infrastructure, based on CNNs, where

the spatial-temporal solutions are linked to the results of

the perception stage. In this perspective, a primary role is

devoted to the introduction of plasticity to enhance the as-

sociation stimuli-CNN dynamics-action selection with ap-

plication to the task of autonomous navigation control.

1. Introduction

It is known that an organism is able to perceive a set

of simple sensory events (US, unconditioned stimuli), each

of which automatically triggers a response (UR, uncon-

ditioned response) by the nervous system. According to

Classical conditioning, [1], the repeated simultaneous pre-

sentation of an initially neuter stimulus (CS, conditioned

stimulus) and an US is able to build an association between

the two stimuli. This allows, after a number of trials, the

CS to be able to command a response (CR, conditioned re-

sponse), similar to the UR. Operant conditioning ([2], [3]),

provides the animal with a further improvement in behav-

ior by means of a task-dependent combination of rewarding

successful actions and punishing unsuccessful ones.

Recently, on the basis of the new behavioral-based robot-

ics paradigm [4] and of the neurobiological cues, machine

perception research developed several bio-inspired frame-

works of perception process, such as models of classical

and operant conditioning [5] or a closed loop anticipatory

network avoiding reflexes [6].

In this paper we present a new framework for the sensing-

perception-action cycle emulating the low-level reflex re-

actions with the progressive structuring of a higher-level

behavior. This strategy is applied to the simulation of a ro-

bot in a random foraging task.

The perceptive structure can be divided into functional

blocks. Firstly we define a sensing block (afferent layer),

which receives sensorial stimuli from the environment and

sets the initial conditions for a two layer RD-CNN, which

is the core of the perception process. The CNN parameters

are chosen to generate Turing patterns, regarded as a kind

of internal state for the whole system reflecting the state of

the environment. Each pattern is associated with an action

Figure 1: Functional block diagram of the implemented frame-

work.

(efferent layer) by means of a traditional Motor Map (MM)

[7]. The Reward Function (RF) plays a key role for the

success of the whole strategy. Until now, it was selected a
priori, based on design considerations. In this paper, the

RF is not defined a priori, but is progressively learned by

means of the association between simple and complex sen-

sory events. Unlike classical conditioning, every US drives

the learning of all the CSs. Once a basic reward function

is formed, the reinforcement learning provided by the MM

allows the robot to optimize the behavior in relation to the

given task, according to the experiments in [2] and [3].

Moreover, a basic difference of our framework in compari-

son with [5] and [6] is the introduction of a dynamics in the

system implementing the sensing-perception-action. Non-

linear dynamical systems are used in place of a static neural

network, for reasons of biological plausibility and much

improved plasticity. In this paper the sensing-perception-

action loop is modelled by using nonlinear dynamical sys-

tems like CNNs, exploiting their real-time implementation

[8].

2. The implemented framework

The implemented framework is made up of four main

blocks (Fig.1): the sensing block, which receives environ-

mental stimuli; the perception block, which forms an in-

ternal state from sensor input; the action selection block,

which triggers an action to the effectors; the Reward Func-

tion (RF) block, which evaluates the effectiveness of the

actions and contributes to the learning process. In the fol-

lowing we will refer to iteration to indicate the set of oper-

ations leading to a single robot action.
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Figure 2: (a) Position of the obstacle distance and contact sen-

sor within the robot (Front, Left, Right, Front-Left, Front-Right,

Back-Left, Back-Right). (b) Initialization of the CNN first layer

cells. In blue the cells set by obstacle distance stimuli (F, L, R,

FL, FR, BL, BR) and in yellow those set by target stimuli (T,O

represent respectively the target distance and orientation sensor).

2.1. The sensing block

The robot is assumed to have a squared shape. It is

equipped with low level sensors (providing USs) and high

level sensors (providing CSs). The low level sensors are:

seven contact sensors (front, front-left, front-right, left,

right, back-left and back-right as in Fig. 2.a); one prox-

imity sensor for detecting the target.

The high level sensors are: seven distance sensors for the

detection of obstacles, positioned on the robot as the con-

tact sensors (Fig. 2.a); one distance sensor for detecting the

target; one orientation sensor that determines the angle be-

tween the robot orientation and the direction robot-target.

All the sensors have a limited range and the obstacle dis-

tance and contact sensors have also a limited angular res-

olution. The low level sensors have a digital output: 1 if

an obstacle (or a target) is present in the sensor range, 0

otherwise. The high level sensor output (out) is defined in

pixels (distance sensors) or in degrees (orientation sensor).

It is scaled in the range [0 1] by:

y(out) = e−γ·out (1)

where γ defines the slope of the function. As an example,

for a distance sensor i, the scaled output yobs,i = 0 means

infinite distance, whereas yobs,i = 1 stance for null distance.

2.2. The perception block

The scaled output of each high level sensor sets the ini-

tial conditions of one or more cells in the first layer of the

CNN (Fig. 2.b). This is the dynamical core of the percep-

tion block. We use a two-layer 5x5 RD-CNN ([9]) with

zero-flux boundary conditions and appropriate parameters

to generate Turing patterns [10], [11] and [12]. Each scaled

distance sensor output is connected, in a topological way, to

one of the cells of the first layer of the CNN setting its ini-

tial condition. The scaled output of both the target distance

sensor and the orientation sensor fixes the initial condition

of two cells of the first layer for sake of symmetry. The

state of the cells of the first layer that are not connected to

a sensor and the cells of the second layer were initialized

to 0.

At each iteration we reset the CNN, initialize its cells again

according to sensor outputs, and let the CNN evolve to-

wards a stable Turing pattern.

Using the stable states of a multidimensional nonlinear dy-

namical system, like the CNN in the Turing patterns con-

figuration, is an important mean to fuse and appropriately

store a large amount of information, like that coming from

a complex environment. Thanks to the parallel processing

capabilities of CNNs [8], this kind of sensor fusion is not

time-consuming.

2.3. The RF block and the action selection block

This block is responsible for the evaluation of the suc-

cess or successless of an action, which drives the unsu-

pervised learning algorithm implemented by a motor map.

There is no a priori knowledge about the RF: it is only as-

sumed to have a linear shape and depends on the output of

the high level sensors (i.e. CSs):

RF = −
∑

i

ki · yobs,i − h · ytar − p · yor (2)

where yobs,i are the scaled outputs of the obstacle distance

sensor i, ytar is the scaled output of the target distance sen-

sor, yor is the scaled output of the orientation sensor. The

weights ki, h ed p are randomly initialized in the range [-

0.01 0.01].

First of all, it is necessary to learn the weights of the RF,

i.e. the different meanings to be attributed to the different

CSs. Such an attribution is performed by the association

between the CSs and the USs. In original classical condi-

tioning a specific CS is associated with a specific US. In

our framework we regard the USs as anonymous sensors

and each US can drive the learning of all the CSs. This

assures much more plasticity and robustness: if a contact

sensors would break down, the learning of the related ob-

stacle sensor would not be compromised.

In a first phase the robot is provided only with a basic ex-

plorative behavior and reflex reactions (the URs). When

there are no incoming USs and the action selection block is

not yet active, an explorative behavior is triggered. It con-

sists only in a forward movement of the robot.

When a collision occurs, i.e. an aversive US is sensed, a

reflex reaction is automatically triggered for escaping from

the obstacle. Such a reaction is different according to which

contact sensor has revealed the collision. When the prox-

imity sensor reveals a target, i.e. an appetitive US is sensed,

a reaction toward the target is commanded. At each itera-

tion, for the high-level sensors we evaluate a parameter S ,

called the distance-dependent sensor sensitivity, defined as:

S (t) =
y(t) − y(t − ∆t)

∆t
· max(y(t), y(t − ∆t)) (3)
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When an US is sensed, for every sensors we calculate the

average sensitivity of the last five iterations:

Ŝ (t) =
∑

j

S (t − j∆t), j = 0, .., 4 (4)

Then, the RF weights m = ki, h, p are updated in the fol-

lowing way:

mnew = mold + c · Ŝ (t) (5)

where the parameter c is defined as:{
c = 1, collision occurred;

c = −10, target found.
(6)

Such a different weight is necessary in consideration of the

disproportion between the number of obstacle sensors and

the number of target sensors. To avoid unbounded explo-

sion of the weights value, after 10 iterations without any US

occurrence, a decay rate is introduced: mnew = 0.9999mold.

Once learned, the RF should have positive ki weights and

negative h and p summarizing in a single value information

about obstacle/target distance, and about the robot orienta-

tion towards the target. The higher the value for the RF, the

better the situation for the robot, i.e. far from obstacles and

near a target.

After a prefixed number of RF weight updates, the robot

is allowed to learn the association between each emerged

Turing pattern and a specific motor action by means of a

MM supported by the RF described above. The output of

the first layer cells of the CNN is connected, via synapic

weights win
r , to the neurons of a lattice A, each of which

is associated with an output vector wout
r which specifies an

action. Nevertheless, the actual action performed by the

robot, u is formed by adding a small random noise to the

output weights. The weights win
r and wout

r are randomly ini-

tialized, i.e. the association pattern-action is initially ran-

dom. When an action is performed, the new incoming CSs

(which represent the environmental feedback) set the cur-

rent value of the RF. Such a value is compared with the

previous one:

DRF(t) = RF(t) − RF(t − ∆t) (7)

A positive (negative) value for DRF indicates a successful

(unsuccessful) action. Successful actions are followed by

reinforcements like in the experiments described in [2] and

[3] according to the following algorithm:

– let the CNN evolve and stabilize a Turing pattern;

– determine the winner neuron s, i.e. that one whose synap-

tic weight vector win
s best matches the input v;

– update the synaptic weights: ∆win
r = win

r + εhrs(v − win
r )

– update the output weights: ∆wout
r = wout

r + ε
′h′rs(u−wout

r ).

The parameters ε and ε′ are the learning rates, while hrs and

h′rs are the interaction functions which allow to update also

the weights of the nearest neighbors of the winner. Further

details on the MM learning can be found in [12].

Figure 3: Simulation environment: for each real target both the

region in which it is visible by the distance and by the proximity

sensors is reported.

3. Results and discussion

The simulated environments, which the robot is placed

in, are made up of obstacles, walls (that are considered as

obstacles too) and targets. When the robot finds a target,

this one is disabled and cannot be seen by the robot, even if

the target is within the robot detection range. It is enabled

again when the robot finds another target, that is in its turn

disabled. This mechanism allows the robot to visit different

targets. The training environment is shown in Fig. 3. The

applied experimental protocol is made up of two phases:

1. Learning of only the RF weights: during this phase

the robot, by the algorithm described above, the robot

learns the rewarding mechanism for each high level

sensors.

2. Refinement of RF weights and learning of the MM:

the actions, initially randomly chosen, are then asso-

ciated, via the MM unsupervised learning algorithm,

with particular patterns so as to maximize the RF.

The robot start the experiment with only the reflex reac-

tions behavior which allows the robot simply to rebound

when a collision occurs and reach a target only within a

small region around a target itself. When the robot suf-

fers collisions or finds targets, the RF weights are updated.

After a time of high oscillation in the weight values, such

weights will differentiate, i.e. the robot is able to distin-

guish the meaning of the different CSs thanks to the asso-

ciation with the USs. At this point, second phase can start:

while the RF weights continue to evolve and start stabi-

lizing, the reflex reactions level is supported by the higher

level behavior which is progressively learned by means of

the unsupervised learning of the MM.

Fig. 4 shows the evolution of the RF weights during the

overall simulation. It should be noticed that the RF weights

related to the obstacle distance sensors converge to positive

values, while the RF weights related to the target distance

and orientation sensors stabilize on negative values.

This result outlines that the introduced algorithm for the

right MM learning successfully distinguished the meaning

of the two different kinds of sensors. Taking in account the

567



structure of the RF described above, the robot considers a

high scaled output of an obstacle sensor as a negative situ-

ation, and a high value coming from a target sensor as pos-

itive meaning. Furthermore, the weight related to the ob-

stacle distance sensor located on the frontal part of the ro-

bot (F) becomes far bigger than the other obstacle weights.

Among the target sensors, the distance sensor reaches a

value greater than the other, which could be pruned. These

considerations can lead to consider this framework as a test

useful for choosing the kinds of sensors to use on a ro-

bot and the positions where it is more convenient to locate

them. The MM supported by the learned RF allows the

robot to learn a higher-level behavior. The association be-

tween each emerged Turing pattern and the correspondent

action guarantees a high level of plasticity in the choice of

the action to perform due to the enormous number of Tur-

ing patterns that can emerge from a 5x5 RD-CNN. These

patterns can represent many possible conditions of the envi-

ronment and the unsupervised learning of the MM permits

the robot to associate to each pattern the correct action as

also demonstrated in [12].

4. Conclusions

A new framework has been presented for action-oriented

perception in roving robots provided with different kinds

of low level and high level sensors. The RF learning algo-

rithm was proved to be very effective, allowing the robot to

distinguish, without any previous knowledge, the different

high level stimuli. Once learned the correct RF form, the

MM, as already shown in [12], is able to construct a higher-

level behavior. Future developments of this work include:

a pruning of the low-weighted high level sensors, the de-

finition of a more precise stop criterium for the RF learn-

ing algorithm. Furthermore, we will increase the number

and the types of sensors for reasons of biological plausibil-

ity and in order to verify the sensor fusion allowed by the

framework. All these developments are oriented to a future

hybrid analog/digital hardware implementation.
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