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Abstract—Many studies in neuroscience have shown
that nonlinear dynamic networks represent a bio-inspired
models for information and image processing. Recent stud-
ies on the thalamo-cortical system have shown that weakly
connected oscillatory networks have the capability of mod-
elling the architecture of a neurocomputer. In particular
they have associative properties and can be exploited for
dynamic pattern recognition. In this manuscript the global
dynamic behavior of weakly connected cellular networks
of oscillators is investigated. It is assumed that each cell
admits of a Lur’e description. In case of weak coupling the
main dynamic features of the network are revealed by the
phase deviation equation (i.e. the equation that describes
the phase deviation due to the weak coupling). Firstly a
very accurate analytic expression of the phase deviation
equation is derived, via the joint application of the describ-
ing function technique and of Malkin’s Theorem. Then it
is shown that the total number of periodic limit cycles, with
their stability properties, can be estimated through the anal-
ysis of the phase deviation equation.

1. Introduction

Weakly connected oscillatory networks represent bio-
inspired architectures for information and image process-
ing. Recent studies in neuroscience have shown that some
significant features of the visual systems, like the binding
problem [1], can be investigated, by exploiting nonlinear
dynamic network models [2]. Some studies on the thalamo-
cortical system have suggested new architectures for neu-
rocomputers, that consist of locally coupled arrays of os-
cillators, with a periodic and/or complex dynamic behav-
ior (including the possibility of chaos) [3, 4]. In particu-
lar, it has been shown that nonlinear oscillatory networks
exhibit associative properties and can be exploited for dy-
namic pattern recognition [3, 4].

In many cases such networks can be adequately mod-
elled as cellular neural/nonlinear networks (CNNs), a new
paradigm of analog dynamic processors, that was intro-
duced some years ago in the electrical engineering com-
munity [5, 6]. CNNs are described as 2 or n-dimensional
arrays of mainly identical nonlinear dynamical systems
(called cells), that are locally interconnected. In most
applications the connections are specified through space-
invariant templates (that consist of small sets of parameters

identical for all the cells). The local connectivity has al-
lowed the realization of several high-speed VLSI chips [7].

The mathematical model of a CNN consists of a large
system of locally coupled nonlinear ordinary differential
equations (ODEs), that may exhibit a rich spatio-temporal
dynamics, including several attractors and bifurcation phe-
nomena [8]. For this reason CNN dynamics has been
mainly investigated through time-domain numerical sim-
ulation. Recently some spectral techniques have been
applied to space-invariant CNNs, in order to character-
ize some space-time phenomena (see [8] and in particular
[9, 10]). However the proposed methods are not suitable
for characterizing the global dynamic behavior of complex
networks, that exhibit a large number of attractors.

Weakly connected oscillatory networks can be investi-
gated through the phase deviation equation, [4] i.e. the
equation that describes the evolution of the phase devi-
ations, due to the weak coupling. We have employed
this method for investigating one-dimensional weakly con-
nected networks, composed by third order oscillators
(Chua’s circuits) [11]. In particular we have shown that an
accurate analytic expression of the phase deviation equa-
tion can be derived, via the joint application of the describ-
ing function technique and of Malkin’s Theorem.

In this manuscript we focus on oscillatory patterns in
weakly connected networks, employed as dynamic asso-
ciative memories [3]. We firstly derive an accurate ana-
lytic expression of the phase deviation equation for generic
weakly connected networks, composed by nonlinear oscil-
lators, that admit of a Lur’e type description [12]. Then we
show that a detailed analysis of the phase deviation equa-
tion allows one to accurately estimate the total number of
periodic limit cycles with their stability properties.

2. Weakly Connected Networks

A weakly connected network (WCN), [4] composed by
n cells of dynamical order m, is described by the following
system of nonlinear ordinary differential equations (ODEs)
(1 ≤ i ≤ n):

Ẋi = Fi(Xi) + ε Gi(X ), X = [XT
1 , ... X

T
n ]T (1)

where Xi represents the state vector of each cell, Fi :
Rm → Rm, Gi : Rm×n → Rm, T denotes transposition
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and ε represents a small parameter that guarantees a weak
connection among the cells.

We assume that each uncoupled cell admits of a Lur’e
representation [12], and in particular that its state equations
can be recast as follows:

ẋa
i = Ai

11 xa
i +Ai

12 Xb
i + fi(x

a
i )

Ẋb
i = Ai

21 xa
i +Ai

22 Xb
i (2)

where xa
i ∈ R is a scalar component of Xi, Xb

i ∈ Rm−1

represents the collection of the other components of Xi,
Ai

11 ∈ R, Ai
12 ∈ R1,m−1, Ai

21 ∈ Rm−1,1, Ai
22 ∈ Rm−1,m−1

and fi(·) is a scalar Lipschitz nonlinear function.
By exploiting (2) a linear relationship between Xb

i (t) and
xa

i (t) is readily derived:

Xb
i (t) = (D −Ai

22)−1 Ai
21 xa

i (t) (3)

where D denotes the first order time-differential operator.
This allows one to rewrite equations (2) in term of the

sole scalar variable xa
i :

Li(D) xa
i (t) = fi[x

a
i (t)] (4)

where Li(D) has the following expression:

Li(D) = D − Ai
11 −Ai

12 (D −Ai
22)−1 Ai

21 (5)

We assume that each cell is only coupled to the cells be-
longing to its neighborhood of radius r and that the cou-
pling is space-invariant and only involves the scalar vari-
ables xa

i . By denoting with Ck the corresponding space-
invariant template, the resulting WCN is described by the
following simplified system of Lur’e like equations:

Li(D) xa
i (t) = fi[x

a
i (t)] + ε

k=r∑
k=−r

Ck xa
i+k(t) (6)

It turns out that only one component of Gi is different
from zero, i.e.

Gi(X ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k=r∑
k=−r

Ck xa
i+k(t)

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

We assume that, in absence of coupling, each cell only
exhibits the following invariant limit sets: a finite number
of unstable equilibrium points, a finite number of either sta-
ble or unstable periodic limit cycles and at least one asymp-
totically stable limit cycle.

According to the these assumptions, we focus on a set of
parameters and initial conditions such that the trajectory of
each uncoupled cell is a periodic (either stable or unstable)
limit cycle, described by a regular curve γi(t) ⊂ Rm. If we

denote by ωi and θi ∈ S 1 = [0, 2π[ the angular frequency
and the phase respectively of each limit cycle γi(t), then the
WCN admits of the following description in term of phase
variables:

θi(t) = ωi t + φi(t) (8)

where φi(t) ∈ S 1 represents the phase deviation from the
natural oscillations, due to weak coupling.

If the angular frequencies ωi are commensurable, then
Malkin’s Theorem [4] provides an explicit way for deriving
the system of differential equations, that governs the phase
deviation evolution. For the sake of the completeness and
for introducing the proper notations, we report here a sim-
plified version of Malkin’s Theorem [4] (see also [11]).

Theorem 1 (Malkin’s Theorem for weakly coupled oscil-
lator, with commensurable angular frequencies): Consider
a WCN described by (1) and assume that each uncoupled
cell

Ẋi = Fi(Xi), Xi ∈ Rm, (1 ≤ i ≤ n) (9)

has a hyperbolic (either stable or unstable) periodic orbit
γi(t) ⊂ Rm of period Ti and angular frequency ωi = 2π/Ti.
Let τ = ε t be slow time and let φi(τ) be the phase deviation
from the natural oscillation γi(t), t ≥ 0. Then the vector of
phase deviation φ = (φ1, φ2, ..., φn)T is a solution to:

φ′i = Hi(φ − φi, ε) (1 ≤ i ≤ n) (10)

where φ − φi = (φ1 − φi, ..., φn − φi)T ∈ [0, 2π[n= T n,
′ = d

dτ and

Hi(φ − φi, 0) =
1
T

∫ T

0
QT

i (t) Gi

[
γ
(
t +
φ − φi

ω

)]
dt

γ
(
t +
φ − φi

ω

)
=

[
γT

1

(
t +
φ1 − φi

ω1

)
, ..., γT

n

(
t +
φn − φi

ωn

)]T
(11)

being T the minimum common multiple of T1, T2, ..., Tn.
In the above expression (11) Qi(t) ∈ Rm is the unique non-
trivial Ti-periodic solution to the linear time-variant sys-
tem:

Q̇i(t) = −[DFi(γi(t))]
T Qi(t) (12)

QT
i (0)Fi(γi(0)) = 1 (13)

In order to apply Malkin’s Theorem to weakly connected
networks and to compute the phase deviation equation (10)
the knowledge of γi(t) (i.e. the limit cycle trajectories in
absence of coupling) is required. Our method is based on
the idea that γi(t) can be approximately computed by ex-
ploiting the describing function technique (the conditions
under which this assumption is reasonable are given in [12]
and [13]). More precisely the proposed methods consists of
three fundamental steps, that are described in the following
three subsections.
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2.1. Describing function approximation of γi(t)

The scalar variable xa
i (t) of the Lur’e model (4) is rep-

resented through a bias term and a single harmonic, with
suitable amplitude and angular frequency:

xa
i (t) ≈ x̂a

i (t) = Ai + Bi sin (ωi t) (14)

where Ai denotes the bias, Bi the amplitude of the first har-
monic, and ωi is the angular frequency.

The output of the nonlinear function f (·), when the input
is (14), admits of the following first harmonic representa-
tion (that in several cases can be expressed through a close
analytical form):

fi[x̂
a
i (t)] ≈ FA(Ai, Bi) + FB(Ai, Bi) sin (ωi t) (15)

where:

FA
i (Ai, Bi) =

1
2π

∫ π
−π

fi [Ai + Bi sin(θ)] dθ

FB
i (Ai, Bi) =

1
π

∫ π
−π

fi [Ai + Bi sin(θ)] sin(θ) dθ

(16)
The parameters Ai, Bi and ωi are the solution of the de-
scribing function system shown below:

Li(0) Ai = FA
i (Ai, Bi) (17)

Re[Li( jωi)] Bi = FB
i (Ai, Bi) (18)

Im[Li( jωi)] = 0 (19)

Once x̂a
i (t) is known, the first harmonic approximation of

γi(t), i.e. γ̂i(t) = [x̂a
i (t), [X̂b

i (t)]T ]T , is determined by deriv-
ing X̂b

i (t), via the linear differential relation (3).

2.2. Describing function approximation of Qi(t)

According to Malkin’s Theorem, Qi = [qa
i , [Q

b
i ]T ]T is

the unique Ti-periodic solution to the linear time-variant
system (12), satisfying the normalization condition (13):

⎛⎜⎜⎜⎜⎜⎝ q̇a
i (t)

Q̇b
i (t)

⎞⎟⎟⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎜⎜⎝ Ai

11 + f ′i [xa
i (t)] (Ai

21)T

(Ai
12)T (Ai

22)T

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ qa

i (t)

Qb
i (t)

⎞⎟⎟⎟⎟⎟⎠
(20)

Hence a linear relationship holds between Qb
i (t) and qa

i :

Qb
i (t) = −[D + (Ai

22)T ]−1 (Ai
12)T qa

i (t) (21)

By substituting (21) in (20) and by exploiting (5), it is eas-
ily proved that the following scalar Lur’e like variational
equation holds for qa

i (t):

Li(−D) qa
i (t) = f ′[xa

i (t)] qa
i (t) (22)

The aim of this Section is to find a first harmonic approx-
imation q̂a

i (t) of qa
i (t). The main result is enunciated in the

following Proposition. The proof, that for lack of space is
not reported here, can be found in [14].

Proposition: If the limit cycle γi(t) is hyperbolic and all the
harmonics of order higher than one are neglected, then the
following expression holds for q̂a

i (t):

q̂a
i (t) = δi(ωi) cos(ωit) (23)

where

δi(ωi) =
1

ωi Bi {Im[N T
i ( jωi)] · Im[Mi( jωi)]} (24)

Mi( jωi) = ( jωi −Ai
22)−1 Ai

21 (25)

Ni( jωi) = −[ jωi + (Ai
22)T ]−1 (Ai

12)T (26)

2.3. Phase deviation equation

We show that an explicit and very accurate expression of
the phase deviation equation can be derived by substituting
in (11) the describing function approximation of γi(t) and
Qi(t), provided in the previous subsections. By remember-
ing that, according to (7), only one component of Gi(X ) is
different from zero, we obtain:

φ′i ≈ Hi(φ − φi, 0) =
1
T

∫ T

0
QT

i (t) Gi

[
γ
(
t +
φ − φi

ω

)]
dt

≈ 1
T

∫ T

0
q̂a

i (t)
k=r∑

k=−r

Ck x̂a
i+k

(
t +
φi+k − φi

ωi+k

)
dt

=
1
T

∫ T

0
δi cos(ωit)

k=r∑
k=−r

Ck
[
Ai+k + Bi+k sin(ωi+kt + φi+k − φi)

]
dt

=
δi
2

∑
k∈[−r,r], ωi=ωi+k

Ck Bi+k sin[φi+k − φi]

=
Vi(ωi)

Bi

∑
k∈[−r,r], ωi=ωi+k

Ck Bi+k sin[φi+k − φi] (27)

where, according to (24) the following expression holds
for Vi(ωi):

V(ωi) =
1

2ωi {Im[N T
i ( jωi)] · Im[Mi( jωi)]} (28)

It is worth noting that the phase of the i-th oscillator is
only influenced by the oscillators with identic angular fre-
quency: this is in agreement with the well known and gen-
eral results reported in [4].

If all the cells are identical (i.e. ∀ k : Bi+k = Bi, ωi =

ωi+k), the equation above admits of the following simplified
form:

φ′i ≈ V(ω)
k=r∑

k=−r

Ck sin(φi+k − φi) (29)
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where

V(ω) =
1

2ω {Im[N T ( jω)] · Im[M ( jω)]} (30)

Remark 1: Equation (27) reduces a rather complex network
of oscillators to a simple Kuramoto-like model [15], that
can be analytically dealt with. This opens the possibility of
developing new applications, that exploit the rich dynamic
behavior of nonlinear dynamic arrays, including dynamic
pattern recognitions and dynamic associative memories [3].

Remark 2: Each limit cycle (either stable or unstable) of
the weakly connected network corresponds to an equilib-
rium point of the phase deviation equation (27) (see [4]).
The analytical Kuramoto-like form of (27) allows one to
detect the total number of equilibrium points and hence to
estimate the total number of periodic limit cycles.

Remark 3: The stability analysis of each limit cycle arises
from the stability analysis of each equilibrium point of (27),
by computing the corresponding Jacobian matrix. The lat-
ter admits of a simple analytical form and hence is particu-
larly suitable for stability analysis.

Remark 4: The case under study is a one dimensional ar-
ray of oscillators, with local space-invariant connections.
However the proposed approach allows one to explicitly
derive a very accurate analytical approximation of the
phase deviation equation for more complex networks. In
particular the general case of two-dimensional fully con-
nected arrays, composed by oscillators with different and
commensurable angular frequencies can be dealt with.

3. Conclusions

Weakly connected oscillatory networks are bio-inspired
models for information processing. In particular they have
associative properties and can be exploited for dynamic
pattern recognition. We have considered space-invariant
weakly connected networks, composed by nonlinear os-
cillators that admit of a Lur’e type description. We have
shown that an accurate analytical expression of the phase
deviation equation (i.e. the equation that describes the
phase evolution, due to the weak coupling) can be derived
via the joint application of the describing function tech-
nique and of Malkin’s Theorem. This extends the results
that we presented in a previous work, which only apply
to one-dimensional array of third-order oscillators (in par-
ticular Chua’s circuits) [11]. Then we have shown that a
detailed analytical study of the phase deviation equation
allows one to accurately estimate the total number of limit
cycles and their stability characteristics.
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