
Can DT-CNN Classifiers outperform SVM?

Christian Merkwirth† and Jochen Bröcker‡ and Jörg Wichard†† and Maciej Ogorzałek†

†Department for Information Technologies

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University

Reymonta 4, 30-059, Kraków, Poland

‡Centre for the Analysis of Time Series, London School of Economics

Houghton Street, London WC2A 2AE, UK

††Molecular Modeling and Ligand Design, Forschungsinstitut für Molekulare Pharmakologie

Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany

Email: ChristianMerkwirth@web.de, J.Broecker@lse.ac.uk, JoergWichard@web.de, maciej@agh.edu.pl

Abstract—We show how to train Discrete Time Cellular

Neural Networks (DT-CNN) successfully by backpropaga-

tion to perform pattern recognition on a data set of hand-

written digits. By employing concepts and techniques from

Statistical Learning, we can obtain results outperforming

that of a polynomial Support Vector Machine (SVM).

1. Introduction

The local processing paradigm of the Cellular Neural

Network mimics the processing of visual perception in bi-

ological systems and should therefore be well suited for

pattern recognition tasks ([1]). We claim that by training

several DT-CNNs with a stochastic gradient descent algo-

rithm, we can reach better classification performance on

the ZIP code test set than by using SVMs with polynomial

kernel (see [2]).

The CNN template weights of the individual classifiers

are determined by using a backpropagation scheme. We

employ an online learning setting, which means that after

one observation is processed, a tiny gradient step is per-

formed. In order to reach a high generalization perfor-

mance, we use several recent developments from the field

of Machine Learning:

• ε-insensitive absolute loss instead of mean quadratic loss.

This brings the backpropagation training of the CNN tem-

plate weights closer to the optimization criterion used for

constructing SVM classifiers (see [3]).

• Ensembling (classifier averaging). By averaging the out-

put of several individually trained classifiers, one can im-

prove the generalization performance of neural network

classifiers ([4], [5]).

2. The DT-CNN classifier

Let yt be a M–by–M spatial pattern, and yt
i j denotes its

entries for i, j = 1 . . .M. The states of the DT-CNN cells

yt
i j evolve for iterations t = 0, . . . ,T − 1 according to:

xt+1
i j =

∑ K−1
2

l,m=− K−1
2

(At
l,myt

i+l, j+m + Bt
l,mui+l, j+m) + bt,

yt+1
i j = σ(xt+1

i j),

y0
i j = 0

(1)

where the ui j denote the input pattern and σ(xi j) is the so–

called activation function. The matrices (resp. numbers)

At, Bt and bt are usually referred to as template weights. If

we use different template weights (At, Bt and offsets bt) in

each iteration t, the DT–CNN is called non-stationary. In

this case, we get (2K2 + 1) scalar parameters per iteration

step or template layer, where K is the number of rows of

the quadratic template matrices. K also determines the de-

gree of local connectivity. The total number p of adjustable

scalar parameters can be calculated by p = T (2K2+1)−K2.

A0 is not used since y0
i j = 0 by initialization. The number

of template weights does not depend on the spatial size M
of the CNN receptive field. Elements outside the bound-

ary are treated as zero, which is identical to the value of

background pixels.

The classification task is to decide if a given object be-

longs to a specified class or not (binary decision). To use

a DT–CNN for classification (i.e. to decide whether the in-

put pattern belongs to a certain prescribed class or not), we

present an input pattern u (e.g. the 256 values from the gray

scale image) to the receptive field of the DT-CNN. Then the

output pattern has to be transformed into a decision vari-
able. This can be done by, e.g. averaging over the entire

output yT
i j. By checking if the value of the decision variable

z exceeds a certain threshold the decision is taken.

In this paper the specific task is to identify isolated hand-

written digits (from zero to nine). This is a classification

problem with ten different classes which can be converted

into 10 binary classification problems [6]. All ten classi-

fiers are trained on the same 7291 input patterns. The de-

sired outputs presented to the first classifier are +1 for ob-

servations that have class label 0, otherwise −1. For the

second classifier the desired outputs are +1 for observa-

tions with class label 1, and so on. To classify a new input

Bruges, Belgium, October 18-21, 2005
Theory and its Applications (NOLTA2005)

2005 International Symposium on Nonlinear

557

Figure 1: Piecewise linear function used as activation func-

tion. The function does not saturate at ±1, but the slope

decreases to 0.01.

pattern, it is presented to all ten trained classifiers and the

class label belonging to the classifier with highest output

value z is chosen as final output label. The activation func-

tion σ(x) is a piecewise linear sigmoid–like function (see

FIg. 1). As this function does not saturate the training al-

gorithm exploiting derivative information can escape solu-

tions featuring very large template weights, which usually

are not optimal [7].

3. Training of DT-CNN Classifiers

The main challenge faced when designing DT–CNN’s

for classification is to find template weights. We will use

algorithms and principles from the theory of machine learn-

ing. The basic idea is to cast the problem of template design

into an optimisation problem by employing a representative

set of training data and a suitably chosen measure of per-

formance or loss. The whole procedure is referred to as

training.

Let (uk, zk), k = 1 . . .N be the training data consisting of

input output pairs. In the example of classifying images of

handwritten digits, the uk, k = 1 . . .N are images of various

different handwritten digits of known significance. Upon

presentation of an input pattern uk the DT–CNN yields an

output pattern yT . As mentioned in section 2 this output

is averaged, resulting in a real number which can be con-

sidered as a function f (uk, P) of the input pattern uk and

the parameters (template weights) P. Now this value has to

be compared to the class label zk by means of a loss func-
tion. The loss function measures the deviation of the CNN

output from the desired value zk. In optimization usually

a quadratic loss function is used, basically due to the sim-

plicity of the resulting derivatives. We however advocate

the use of an ε–insensitive absolute loss function λ1
ε . The

advantages of this strategy as well as the functional form

of λ1
ε are described in section 3.1. The total loss or training

error is simply the loss averaged over the entire training set.

E(P, ε) :=

N∑
k=1

λ1
ε (zk − f (uk, P)). (2)

The training relies on minimization of the training error

E(P, ε) with respect to P. Furthermore it depends on ε, the

significance of which becomes clear in the next section.

3.1. The ε–insensitive loss function

The ε–insensitive absolute loss function (see Figure Fig-

ure 2) is defined as

λ1
ε (ξ) :=

{
0 : ξ ≤ ε
|ξ − ε| : ξ > ε.

(3)

It is used to calculate the loss contribution of the misclas-

sified examples. The output of the DT-CNN has zero loss

and gradient if it lies inside the ε–margin of the desired out-

put. This forces the algorithm to focus on the misclassified

training patterns rather than adjusting the weights by gradi-

ent steps of already correctly classified patterns. Training

patterns that cannot be correctly classified have only a lin-

ear contribution to the loss. This provides an appropriate

trade-off between tolerating outliers and penalizing classi-

fication errors. In our case, we use ε = 0.9 which seems

to be very high, but a smaller ε degrades the classification

performance. The use of ε–insensitive loss functions in the

context of learning problems is described in [3].

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

Figure 2: The ε-insensitive absolute loss function used for

the training of the DT-CNNs.

3.2. Stochastic gradient descent

The method of training of DT-CNN classifier is based on

a stochastic gradient descend or online learning, which is

a common method for training neural networks [7]. In or-

der to cope with the particular structure of the DT-CNN we

have to introduce several amendments rendering the train-

ing feasible.

The gradient of the entire training error (Equ. 2) is a sum

of terms of the form

∂

∂P
λ1
ε (z

k − f (uk; P). (4)

The stochastic gradient descent performs a series of very

small consecutive steps, determining each step direction

from the gradient of an individual summand only. After

each step, the new parameter set P is re–inserted into the

558

loss before the next gradient is computed. In other words,

we devise an update rule for the parameters of the form

Pk = Pk−1 − δPk, (5)

where k = 1 . . .N, and N is the number of training samples.

The update δPk depends on the kth training sample only

and is given by

δPk = µ
∂

∂P
λ1
ε (z

k − f (uk; Pk−1). (6)

Thus, in contrast to batch learning, where gradients are ac-

cumulated over all samples of the data set for the same
template setting before a gradient step is performed, here

a tiny gradient step is carried out after each observation

has been processed. A sweep through the whole data set is

called epoch. The initial step size is µinit = 0.0007 and

it is multiplied after each training epoch with the factor

(µend/µinit)
1/N , wherein N is the total number of training

epochs and µend = 0.0002.

3.3. Backpropagation

Backpropagation is an elegant method for efficiently cal-

culating the gradient of an iterated function with respect to

its parameters. In the forward pass the output of the iterated

function is computed accorded to equations 1 and interme-

diate states xt
i j and yt

i j have to be stored for the backward
pass. The backward pass traverses the system in reverse

order, starting from the last iteration of the forward pass.

By applying the chain rule of differentiation, it is possible

to obtain the recursion equation 9 for the backward pass

that closely resembles the forward equations, though the

application of the activation function converts into a multi-

plication with the derivative of the activation function.

For simplicity, we introduce an auxiliary variable that

represents the gradient of the loss function with respect to

the CNN states yt
i j :

st
i j :=

∂λ1
ε

∂yt
i j

(7)

Insertion of initial gradient :

sT
i j = −

1

R2
λ1
ε (z − f (u, P)) (8)

Iteration in reverse order :

st−1
i j =

K−1
2∑

l,m=− K−1
2

At−1
lm st

i−l, j−mσ
′(xt

i−l, j−m) (9)

From the st
i j all derivatives with respect to the parameters

can be obtained :

∂E
∂At−1

lm

=
∑
i, j

st
i jσ
′(xt

i j)y
t−1
i+l, j+m (10)

∂E
∂Bt−1

lm

=
∑
i, j

st
i jσ
′(xt

i j)u
t−1
i+l, j+m (11)

∂E
∂bt−1

=
∑
i, j

st
i jσ
′(xt

i j) (12)

As can be seen from equations 10-12, only state values

yt
i j and derivatives of the activation function σ′(xt

i j) have to

be stored. This results in a space complexity of O(T M2).

3.4. Classifier Ensembling

A way to improve the performance of classifiers is build-

ing classifier ensembles (see [8] and the references therein).

We employed a simple classifier averaging strategy in

which we combine 8 separately trained DT-CNN to an en-

semble classifiers. Please note that we have to construct

one such ensemble for each of the ten binary classification

tasks.

4. Results

In the case of handwritten digit recognition the DT-CNN

has to distinguish a certain digit from all others. Con-

cerning the stochastic gradient descend this leads to a ratio

between positive and negative examples of approximately

1:9. We can significantly improve the learning rate and

the classification performance if we balance the ratio be-

tween positive and negative examples in the training data.

Therefor we enrich the training data set with duplicates of

positive examples until the ratio is 1:1.

For training and testing we used the ZIP Code Data Set1

which consists of normalized handwritten digits, scanned

from envelopes by the U.S. Postal Service. The images

have been deslanted and size normalized, resulting in 16

by 16 grayscale images (see [9]). There are 7291 training

observations and 2007 test observations, distributed as fol-

lows: The patterns are presented to the training algorithm

Digit 0 1 2 3 4

Train 1194 1005 731 658 652

Test 359 264 198 166 200

Digit 5 6 7 8 9

Train 556 664 645 542 644

Test 160 170 147 166 177

Table 1: Distribution of classes in the ZIP Code data sets

as input/output pairs with inputs being 16 by 16 matrices

containing gray levels coded from 0.0 (background pixels)

to 1.0 (foreground pixels). Outputs are class labels out of

0,1,. . . ,9.

Computational demand did not allow to perform a sys-

tematic check of all possible combinations of topological

1 The ZIP Code data set can be obtained from

http://www-stat-class.stanford.edu/˜tibs/ ElemStatLearn

559

parameters K and T . Therefore the template size K em-

ployed during the simulations (see table 2) was fixed to

5. With standard nearest-neighbor coupling K = 3 we

could not achieve an adequate classification performance,

for template size K = 7 we could observe a beginning gap

between training and test errors. From table 2 one can ob-

serve that with T from 1 to 10 layers, classification rate

increases significantly. At higher numbers of template lay-

ers the rate saturates around 96.5%. For comparison, we

constructed a polynomial SVM classifier of degree 4 with

C = 100 (see [2]) on the ZIP Code training set and applied

it to the test set.

T 1 2 3 4

Class.rate 79.7% 91.6% 94.9% 95.9%

T 5 6 8 10

Class.rate 96.0% 96.1 % 95.6% 96.5%

T 14 18 24 SVM

Test 96.6% 96.2% 96.6% 95.4%

Table 2: Classification rates of final classifiers on the ZIP

Code test set versus number of template layers T . Note

that uniform random guessing would yield a trivial classi-

fication rate of 10%.

5. Conclusions

This article discusses a backpropagation type algorithm

for training CNN classifiers for digit recognition. The re-

sults on a database of handwritten digits outperform a poly-

nomial Support Vector classifier. An important aspect here

is the usage of an alternative loss function during the train-

ing process instead of quadratic error. A main drawback of

the method is the higher computational effort for training

ensembles of DT-CNN classifiers than constructing SVM

classifiers on the same task.

6. Outlook

Recent advances in the treatment of non-vectorial data

such as the molecular graph within the Support Vector Ma-

chine framework [10] and within the DT-CNN framework

[11] allow the construction of classifiers that directly use

the molecular structure as input data. We plan to compare

both approaches with respect to the classification perfor-

mance achievable on real-world data sets.

Acknowledgments

The authors would like to thank the inventor of the lib-

SVM, Chih-Jen Lin for stimulating comments and discus-

sions. Parts of this work are supported by the Research

Training Network COSYC of SENS No. HPRN-CT-2000-

00158 within the 5th Framework Program of the EU.

References

[1] T. T. Roska and L.O. Chua. The cnn universal ma-

chine: an analogic array computer. IEEE Trans. Cir-
cuits and Syst., 40(II):163–173, 1993.

[2] C. C. Chang and C.J. Lin. Libsvm -

A library for support vector machines

(http://www.csie.ntu.edu.tw/˜cjlin/libsvm), 2001.

[3] V. Vapnik. The Nature of Statistical Learning Theory.

Springer Verlag, New York, 1999.

[4] M. P. Perrone and L. N. Cooper. When Networks

Disagree: Ensemble Methods for Hybrid Neural Net-

works. In R. J. Mammone, editor, Neural Networks
for Speech and Image Processing, pages 126–142.

Chapman-Hall, 1993.

[5] Anders Krogh and Jesper Vedelsby. Neural network

ensembles, cross validation, and active learning. In

G. Tesauro, D. Touretzky, and T. Leen, editors, Ad-
vances in Neural Information Processing Systems,

volume 7, pages 231–238. The MIT Press, 1995.

[6] C. Hsu, C. Lin, “A comparison of methods for multi-

class support vector machines”, Technical report, De-

partment of Computer Science and Information Engi-

neering, National Taiwan University, Taipei, Taiwan,

2001

[7] Y. LeCun, L. Bottou, G. Orr, and K.R Müller. Effi-

cient BackProp. In G. Orr and K.R Müller, editors,

Neural Networks: Tricks of the trade, volume 1524

of Lecture Notes in Computer Science, pages 9–50.

Springer Verlag, 1998.

[8] C. Merkwirth, M. Ogorzałek, and J.D. Wichard. Sto-

chastic gradient descent training of ensembles of DT-

CNN classifiers for digit recognition. In Proceed-
ings of the European Conference on Circuit Theory
and Design ECCTD’03, volume 2, pages 337–341,

Kraków, Poland, 2003. European Circuit Society.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[10] P. Mahé, N. Ueda, T. Akutsu, J.L. Perret, and J.P.

Vert. Graph kernels for molecular structure-activity

relationship analysis with support vector machines. J.
Chem. Inf. Model., 45(4):939 – 951, 2005.

[11] C. Merkwirth and T. Lengauer. Automatic generation

of complementary descriptors with molecular graph

networks. J. Chem. Inf. Model., ASAP Web publica-

tion, DOI: 10.1021/ci049613b, 2005.

560

