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Abstract�In the framework of dynamic neural
networks, learning refers to the slow process by which
a neural network modi�es its own structure under
the in�uence of environmental pressure. Our simula-
tions take place on large random recurrent neural net-
works (RRNNs). We present several results obtained
with the use of a TD (temporal di�erence) and STDP
(Spike-Time Dependent Plasticity) rule. First, we
show that under some conditions, those learning rules
give rise to an increase of the neurons synchronization,
which can be interpreted as the crossing of a bifurca-
tion line between non-synchronized and synchronized
regimes. Second, we present various results obtained
in control, under a reinforcement learning paradigm:
inverted pendulum control and obstacle avoidance.

1. Introduction

In neural modeling, learning is a path in the space
of control parameters possibly driving the system to-
ward phase transition and bifurcations [14, 5]. It is
also seen as a slow process which interacts with the
fast activation process. Starting from the study of
several families of random recurrent neural networks
with complex intrinsic dynamics, we present here some
of the generic properties displayed by temporal Heb-
bian learning processes in various experiments. In sec-
tion 2, various models of networks and neurons are
�rst presented. The section 3 illustrates the richness
of their dynamics under standard parametric changes.
The section 4 shows how temporal Hebbian learning
rules interfere with the intrinsic dynamics and pro-
duce regime transitions. At last, we present in section
5 some of the applications of those learning techniques
for skill acquisition in robotic devices.

2. Neuron models

This section presents three of the most classical dis-
crete neurons models, namely �ring rate models, bi-
nary models and integrate and �re models.

2.1. Firing rate model

The �ring rate models (i.e. models with continuous
activation) own the lowest time precision. The output

S̄i(t) of a neuron represents the �ring rate within a
certain time window ∆t. For the seek of clarity, the
�ring rate is set to take place within interval [0, 1] and
the sample interval ∆t is assimilated to a unitary delay.
We suppose we have a population of N neurons, and S̄
is the vector of the N current �ring rates. The vector
of membrane potentials is

V(t + 1) = WS̄(t) + u(t) (1)

where u(t) is the incoming signal and W is the in-
teraction matrix. A typical activation function is

f(V, θ, g) = 1+tanh(g(V−θ))
2 where θ is the threshold

and g is the "gain" of the activation function. This
gives the network update,

S̄(t) = f (V(t), θ, g)

2.2. Spiking models

In spiking models, the state of a neuron i is given
by its membrane potential Vi. When Vi reaches the
threshold θ, a spike is emitted (the threshold is sup-
posed positive). In the most simple case (Mac Cullogh
and Pitts model [9]), spike emission is stored in vari-
able Si whose value is 1 when a spike is emitted, and
0 elsewhere. The activation dynamics of neuron i is
thus formally

Si(t) = H(Vi(t) − θ) (2)

where H is the Heaviside function, which is equal to 1
when Vi > θ, and 0 elsewhere.

In the more elaborate leaky integrate and �re (I&F)
model [15], the neuron owns a memory of its past po-
tential (leaky integrator), and is governed by the dis-
crete equation :

Vi(t + 1) = γVi(t) + Ii(t) (3)

The input Ii is composed of external input current
and the contribution from all the neurons according
to the interaction matrix (W) whose charge function
is a pulse (δ) of the �ring times. The activation also
depend on a refractory period which sets the maximum
�ring rate.
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3. Dynamics and transitions

In large recurrent neural networks with random con-
nectivity and continuous activation (see the corre-
sponding contribution [3]), the gain of the transfer
function can be used as control parameter. A generic
route to chaos by quasi-periodicity can be observed
under g quasi-stationary increase [6] (see �gure 1).
Every transition, from �xed point to cycle, T2 torus,
frequency locking and chaos modi�es the behavior of
the system by steps, from order (�xed point) to strong
disorder (deep chaos).

- a -

- b -

Figure 1: Examples of generic quasi periodicity route
to chaos in continuous random network. Gain param-
eter g slowly increases from left to right. The �gures
- a - and - b - come from two distinct networks. - a -
Mean activity - b - Biggest Lyapunov exponent.

Fewer results are available analytically for network
of leaky Integrate and Fire neurons. Numerical simu-
lations show that the standard deviation of a centered
random recurrent network plays can play the role of a
control parameter. Analogous to the gain in continu-
ous model, its slow increase drives the network from
a trivial state of neural death toward a chaotic state
(see �gure 2-a). The �rst bifurcation was proved an-

alytically [12]. In case of refractory period di�erent
from the sampling rate, a further increase of the stan-
dard deviation leads toward "saturation", ultimately
leading to a synchronous regime (see �gure 2 -a). This
diminution of chaos can be measured by a numerical
estimation of the Kaplan-Yorke dimension of the at-
tractor (see �gure 2).

- a -

- b -

Figure 2: Examples of generic evolution diagram for
I& F recurrent network. The standard deviation in-
creases from left to right. - a - Mean potential (model
with refractory period of 5 time steps) - b - Kaplan-
Yorke Dimension of the attractor of the mean potential
embedded in a space of dimension 3.

4. Learning rules

A good learning rule must rely on signals that are
available in the vicinity of the neurons and be plau-
sible, i.e. realizable at low cost at the level of the
neurons. In the framework of Hebbian learning [8],
the weight evolution relies on a product between pre-
synaptic and post-synaptic activities of the form

∆Wij = ασiσj

where α is a learning parameter and σi and σj are
respectively post-synaptic and pre-synaptic signals.
The concrete implementation depends on the neu-

ron model and on the choice of the signals which are
extracted from the neurons activity. Independently
from the neuron model, a distinction can here be made
between order 0 (static) and order 1 (temporal) rules.
Order 0 rules only take into account the current neuron
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activation. Such rules will reinforce the neurons whose
activity is strong, and weaken the neurons whose ac-
tivity is weak. On the contrary, �rst order Hebbian
rules rules mostly take into account the di�erence (or
derivative) of the neurons activities. In that case, the
learning process will reinforce the order 1 characteris-
tics of the neurons dynamics (their "dynamism").
We present here two temporal Hebbian learning

rules. First, the family of temporal di�erence (TD)
rules [13, 10] apply on binary or continuous models. A
TD rule can be implemented as follows :

∆Wij(t) = α (Si(t) − Si(t − 1))Sj(t − 1) (4)

so that the weight is reinforced when Si(t) > Si(t −
1), i.e. when the pre-synaptic signal arrives before a
spike is emitted at time t. The weight decreases when
Si(t) < Si(t − 1), i.e. when the pre-synaptic signal
arrives at time t after a spike has been emitted at
time t − 1.
Spike-Timing Dependent Plasticity (STDP) [2, 1]

apply on spiking models. The STDP rule relies on
an asymmetric learning window based on the delay
of �ring times of the two neurons involved. It takes
classicaly the form :

dW

dt
= W F(tpost − tpre) (5)

using F as :

F(t) =

 α+e−
t
τ t < 0

−α−e−
t
τ t > 0

0 t = 0
(6)

Some authors [10] have shown that STDP can be
viewed as a TD rule under some assumptions.
Starting from a chaotic regime, the application of a

Hebbian rule is found to drive the neural systems to-
ward ordered cyclic and/or synchronized regimes. For
instance, with order 0 rules, this regularizing behavior
has been quali�ed as Hebbian driven "inverse route
by quasi-periodicity" [5]. Here, using a TD rule in
the continuous model, the dynamics converges toward
a cycle with a high level of activity (and do not re-
lax on a �xed point). In the spiking model, STDP
also increases the coupling inside the network creating
therefore high synchrony between neurons. Most im-
portantly, in the two cases, the response of the system
becomes stereotypic, i.e. any input pattern will lead
the system to the same response.
To avoid this e�ect of saturation, one needs to intro-

duce a competing learning rule that allows the network
to remain in a "safe" zone. The basic idea is to re-
verse the sign of the correlation sign in the correlation
rule : anti-Hebbian rule. Contrary to the Hebbian
rules, the anti-Hebbian rules favor the transmissions

between neurons which are not correlated (and dimin-
ish the transmission between correlated neurons). The
alternation between Hebb and anti-Hebb rules thus al-
lows to control the degree of disorder. Figure 3 illus-
trates the mirror e�ect of the successive application of
Hebb and anti-Hebb rule on the binary and the spiking
model. The combined application of both rules allows
the network to remain in a disordered state.

- a -

- b -

Figure 3: Successive application of a temporal Hebb
and anti-Hebb rules. -a- application of TD and anti-
TD in a binary network of 1000 neurons. This �gure
only shows the mean activity. -b- application of STDP
and anti-STDP for the Integrate and Fire model.

5. Applications to Control

Under the classical TD learning approach [13], an
"actor" process is responsible for the choice of a rele-
vant action. The tuning of the action is thus under the
control of the "critic" process, which owns the estima-
tion of the value function. On the contrary to stan-
dard reinforcement methods, we present here alterna-
tive and biologically plausible reinforcement learning
methods which discard explicit evaluation processes.
The selection of a proper action out of several possible
responses will rely on the versatility of the system.

• The action production and exploratory processes
rely on the self-generated chaotic activity.
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• Learning is the selection process through which
the better con�gurations are to be stabilized.

• Learning is based on punctual applications of
"positive" and "negative" Hebbian rules.

The learning process will be conducted by selectively
assigning Hebbian or anti-Hebbian rule in order to
maintain the network in a disordered, versatile and
reactive state.

This approach has been �rst tested on a binary
model, on the inverted pendulum benchmark [4]. The
learning process relies on a selective application of a
positive Hebbian learning rule on feedforward excita-
tory and lateral inhibitory links (positive reinforce-
ment) and local inhibitory links (negative reinforce-
ment). An e�cient (but not optimal) control is found
to take place after few learning steps.

A STDP/anti-STDP learning rule was applied to a
recurrent spiking neural network that control a real
Khepera robot [11]. The task to be learned was a
collision-free movement with the sole use of the robot's
visual input (linear camera) in an arena whose walls
were composed of black and white stripes of random
size (a similar environment that in [7]). STDP was
applied when the robot moved forward above a cer-
tain speed and anti-STDP was applied when it hit the
walls. After the learning process, the robots were able
to avoid obstacles while moving.

6. Discussion

As argued throughout this article, competing learn-
ing rules for competing dynamics can be a powerful
way to develop neural architecture that learns tempo-
ral tasks. As the system spontaneously displays a great
variety of responses, the arising of a reward at a given
time helps to favor a particular response out of a set of
possible responses. The choice is however limited, and
the behavior of the system is not necessarily the the
optimal behavior, but only a viable one. The learn-
ing paradigm lies, in that case, more on a regulation
process than on an optimizing tool. This �ne regu-
lation is obtained via dynamical synapses preventing
them from saturating. However, this straightforward
use of Hebbian principles may not be enough to ex-
tract more than simple sensori-motor skills. Orienting
the learning toward more complex tasks implying ac-
tive memory and delayed responses is still the prospect
for future development and work.
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