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Abstract— In recent years it was discovered that cellu-
lar neural networks with local and space-invariant connec-
tions are able to generate a wide range of two-dimensional
spatiotemporal behavior. Many of these dynamics can
be directly mapped into natural phenomena occurring in
physics, chemistry, and biology. These mappings make cel-
lular neural network a suitable tool for modeling and sim-
ulation of such phenomena. With the advent of advanced
VLSI implementations of this network and its inherent par-
allelism, simulations can be executed on-chip in a frac-
tion of the time that would be necessary with actual dig-
ital computer implementations. In this work we introduce
a methodology for the learning of this kind of dynamics.
The problem is treated as an optimization problem and is
based on trajectory learning for recurrent neural networks.
In order to adapt this to the learning of two-dimensional
dynamics, we proposed a cost function which can incorpo-
rate time instants into the set of variables to be optimized.
As a result it can be observed that the network can also
learn any frequency modulation of the original dynamics.
Besides simulation, the proposed methodology can also be
applied directly to a VLSI implementation of the network.
Experiments were performed for the spiral autowave.

1. Introduction

Recently, the existence of a variety of complex phenom-
ena have been discovered to exist in Cellular Neural Net-
works (CNN) systems [1], which have proven to be very
good tools for modeling and simulation. This, and the
growing interest and success in implementing CNNs on sil-
icon, have contributed to enforce the new paradigm ofac-
tive wave computing [2][3]. This paradigm allows for sili-
con based implementations of algorithms for robot naviga-
tion, artificial retina, finger print enhancement, etc. Among
these complex phenomena, two and higher dimensional
spatiotemporal behavior are of special importance. They
appear in diverse fields of physics, chemistry, and biology,
and can be observed in an active medium which can be
modeled by arrays of coupled non-linear circuits like CNN
cells. Autowaves, spiral waves, traveling waves and many
other of these phenomena have been reported to emerge
from an active medium consisting of an array of CNN cells.
This paper describes the methodology proposed in [4] to
systematically learn such phenomena on CNNs systems.

The methodology to train spatiotemporal behavior with
CNNs is based on trajectory learning. The novelty lies in
the derivation of a cost function that also assimilates the
time instants into the set of parameters to be optimized al-
lows for the learning of the desired behavior with differ-
ent speeds rather than restricting it to the original speed
of the dynamics. Besides the positive effect that this fea-
ture may have for increasing the speed of existing applica-
tions, it also reduces the necessity of generating a perfect
training set, which is certainly the most important issue for
the learning of 2-dimensional spatiotemporal behavior on
CNNs.

2. Trajectory Learning and Cellular Neural Networks

The mapping of trajectory learning with Recurrent Neu-
ral Networks (RNN) [5] into learning of spatiotemporal be-
havior with CNNs is straightforward. One only needs to
consider the equivalence between output neurons and out-
put cells. Although trajectory learning becomes increas-
ingly complicated with the number of neuronsN in the
RNN as the number of weights increases quadratically, by
assuming zero elements in the weight matrices, the compu-
tational burden can be reduced. This is essentially what
happens with CNNs. More precisely, only weights of
neighboring cells are taken into account with the remain-
ing values of the weight matrices equal to zero. More-
over, CNNs weights are often also space invariant. These
weights, called CNN templates, are local and invariant
equivalents of the weights in a RNN. Therefore, the de-
scription of a first order CNN system with local and invari-
ant weights can be reduced to the description of the behav-
ior of a single cell/neuron:

dxi, j

dt
= −xi, j(t) + Ayi, j + Bui, j + z, (1)

with A andB being the local and invariant weights,z de-
noting the bias term, andi, j, the indices of the given cell in
a regular grid.

Other models that are especially important for model-
ing of complex behavior are multi-layer second order CNN
systems. Their dynamics can be represented by the follow-
ing equations:

dxi, j;1

dt
= −xi, j;1(t) + A1,1yi, j;1 + A1,2yi, j;2 + B1ui, j;1 + z1
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dxi, j;2

dt
= −xi, j;2(t) + A2,2yi, j;2 + A2,1yi, j;1 + B2ui, j;2 + z2

where the index after the semi-column identifies the layer
and the indicesi, j locate the given cell within the layer.

Locality and invariance are the main advantages of
CNNs. Despite the condensed set of values that describe
these systems, a large variety of dynamical phenomena
can be observed. Moreover, locality and invariance alone
make these systems very suitable for VLSI implementa-
tion which is a trend that has been emerging in the past
years. Nowadays, high end silicon versions of CNN Uni-
versal Machines (CNN-UM) are already available for the
development of image processing application at extremely
high speed [6].

3. Spatiotemporal Learning with Cellular Neural Net-
works

The fact that the training of CNN systems is reduced to
the learning of the matricesA, B, and the biasz makes the
process much simpler. Nevertheless, in spite of being very
efficient and widely used, gradient descent techniques are
hard to be applied in this case because of the non-linear
output functiony = f (x) that often assumes the piecewise
linear non-differentiable formf (x) = 1

2(|x + 1| − |x − 1|) in
CNN models. This complicates the derivation of an analyt-
ical form for the gradient of the cost function and would re-
quire techniques from non-differentiable optimization. Al-
though gradient methods are more efficient to solve convex
and local optimization problems, there are no guarantees
about the global optimality of the task to be learned for the
problem considered here. Global optimization methods can
be used here with reasonable confidence since the number
of parameters to be optimized is not very high. Addition-
ally, these methods are not limited to convex problems and
can do surprisingly well on problems with many local min-
ima.

Another point that needs to be carefully addressed is
the generation of training sets. While a trajectory can be
described by a sequence of values for every output, e.g.
sin(t), spatiotemporal behavior in a grid of cells needs to
be described by a continuous 2-D image sequence where
the values of the pixels correspond to the output of a single
cell. Due to the couplings between cells, the desired val-
ues of every individual pixel trajectory can not be derived
independently and need to be considered as a whole. As
a consequence, the images in a training set may represent
snapshots of the desired system’s output which are irregu-
lar in time. In order to avoid the necessity of a strict match
between a irregular time evolution of the desired and result-
ing behavior, a new cost function is introduced. This cost
function assimilates the time intervals between snapshots
of the system’s output into the set of optimization parame-
ters. The problem of learning spatiotemporal behavior with

CNNs can be presented in this way as

min
A,B,z,∆tk,∆tk+1,···,∆tT

















E =
∑

i, j

T
∑

k=1

(yd
i, j;k − yi, j(A, B, z, tk))2

















,

(2)
where∆tk = tk − tk−1 ∀ k = 0, · · · , T , representing the time
interval between two output samples withT being the finite
number of samples andt0 = 0. yd

i, j;k denotes the desired
output value of a pixel in thekth image of a given sequence
of T images. The initial conditionsx(0) are also assumed to
be given. The valueyi, j(A, B, z, tk) denotes the output value
of a pixel as the system has evolved to the time instanttk
with weight matricesA andB, and biasz.

Observe that the desired outputsyd
i, j;k do not depend on

time but rather on the indexk of time instants whereas the
obtained outputsyi, j(A, B, z, tk) do depend on the time in-
stantstk but these are also parameters to be optimized. A
way to exemplify the results of such measure in view of
trajectory learning is to think that if the trajectory to be
trained is e.g. sin(t), the resulting trajectory is allowed to
be any approximation of sin(ωt), i.e. the desired trajectory
becomes not only sin(t) but also any frequency modulation
of it. Additionally, also observe that∆tk is the parame-
ter to be optimized rather thantk itself. In this case all
the desired time instantstd

k are irrelevant, only the order in
which the images are learned matters, not at which specific
time instants the images are generated by the CNN. This is
also the reason why the error term (yd

i, j;k−yi, j(A, B, z, tk))2 is
summed over allk samples rather than integrated over time
the interval [0, tT ]. The right choice for the value ofT will
depend on how difficult the learning problem is and on how
much time and processing resources are available.

The relaxation of the schedule for the resulting spa-
tiotemporal behavior is an important issue for CNNs. Fix-
ing a rigid schedule for the spatiotemporal trajectory to be
learned would magnify the importance of a physically fea-
sible training set and this needs to be avoided for a simple
reason: in many cases nothing can guarantee that suggested
time stamps for the desired spatiotemporal trajectory have
a fixed relation between themselves in a real system.

The training of complex behavior like autowaves can be
given an extra degree of freedom which concerns the num-
ber of CNN layers involved. In a 2-layer CNN for example,
autowaves occur simultaneously in both layers but often
with different waveforms. Frequently the outcome of what
happens in one layer is sufficient for some applications and
in this case only the output of this layer needs to be taken
into account for the calculation of the cost function. How-
ever, besides the cases where the outcome of both layers is
important, the inclusion of the output of the second layer
in the cost function calculation can sometimes bring more
insight about the location of a globally optimal solution.
For this case it is only necessary to include a sum over the
number of layers in Eq. (2), and an index for the layers in
the output and desired output values.
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4. A Learning Example of Spatiotemporal Behavior

A very interesting class of spatiotemporal behavior is
autowaves. The term autowave is an abbreviation of
”autonomous wave” commonly used to characterize self-
sustained signals that induce a local release of stored en-
ergy in an active medium, and use this energy to trigger the
same process in neighbor regions. Many waves occurring
in nature share the same properties. Typical examples in-
clude: waves in the cerebral cortex, epidemic waves, com-
bustion waves, reaction-diffusion processes, etc. In cel-
lular neural networks, autowaves represent the means for
the new paradigm of active wave computing and have been
used for example to guide robots along obstacles towards a
target [7]. An example of autowaves known as spiral wave
is shown in Fig. 1.

Figure 1: Spiral autowave phenomena in a 2-layer CNN
simulator: initial conditions and time snapshots of the out-
put in the two layers. Each row represents one layer.

In CNN systems, autowaves have been observed to
emerge in 2-D arrays of second or higher order cells [8, 9]
and delayed type first order cells [10]. Due to the fact that
the arrays of regular first order cells can not generate the
necessary active local dynamics, autowaves can not be ob-
served in these systems. In this paper the model chosen to
produce autowaves is a 2-layer array of second order CNN
cells described by Eq. (2).

In order to train a spiral wave like the one of Fig. 1, a
few issues need to be addressed. The optimization method
used to minimize the cost function in Eq. (2) was Adaptive
Simulated Annealing (ASA) [11]. This method has proved
to be efficient for tuning fixed output templates for VLSI
implementations [12]. It can be observed that if one makes
T = 1 in Eq. (2) andt1 is removed from the optimization
and made sufficiently long, this cost function is reduced to
the fixed output case. The same approach of relaxation of
constraints and search boundaries used in [12] can also be
made useful for learning in the following way: (a) in the
beginning of the learning process no limits are imposed to
the weight values and thus the maximum range of values
are available; (b) after this process converges, better solu-
tions are obtained by limiting the weight values to values
that are close to the first solution and/or incrementally re-
laxing existing constraints, e.g. symmetry, non-zero val-
ues, etc; (c) the last step is then repeated until any stopping
criteria is reached.

Only immediate neighbor cells are assumed to have a

non-zero weight, which means thatA andB ∈ R
3×3. How-

ever, if prior knowledge about the template matrices is
known, the number of parameters that actually needs to be
optimized inA and B can be reduced, e.g. with symme-
try this number can go from 9 to 5 parameters per matrix.
Without any prior knowledge, the number of parameters to
be optimized are the values of a full template plus the num-
ber of time intervalsT . For simplification, the input images
in Eq. (1) will be set to zero, and therefore the input weight
matrix B will be assumed zero.

Initial conditions are another important aspect to con-
sider when trying to generate autowaves. Here the initial
condition of the first layer will be given as an image and
the image for the second layer it will be assumed to be the
same image of the first layer inverted and shifted one or two
pixels in the direction of the desired propagation. Observe
that, this is not the only way for generating initial condi-
tions for autowaves [13] but it is certainly a simple one.

The images in Fig. 1 were produced by simulation and
used as training set for experiment with autowaves. The re-
sults of the learning process are shown in Fig. 2. The train-

(a) (b)

Figure 2: Spiral autowave that was learned from the three
first columns of Fig. 1. (a) Trained behavior; and (b) gen-
eralized behavior further in time.

ing was performed in a simulator although the same proce-
dure could be used to train a CACE1k CNN-UM chip [14].
Although the images for the training set and the learning
itself were generated with the same simulator, the original
and the resulting template are not the same. Observe that
there was a good generalization of outputs further in time
that were not used for the learning process. Another im-
portant remark to be made w.r.t. Fig. 2 is that the speed
of the template execution changed. The speed of the evo-
lution of the learned behavior is approximately 20% faster
than the original one although no measures were taken with
respect to this. The difference in speed and a clear sight of
the generalization of the learned template can be seen in
Fig. 3, where original and trained templates can be seen in
a larger grid of cells. Observing how the speed changed,
one may assume that the learned template could also have
randomly generated a behavior which was slower or even
faster. Hence changes in speed of a given CNN operation
are possible, without modifying time constants.
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Figure 3: Evolution of a 64x64 CNN grid for the original (row 1) and trained (row 2) templates. The columns represent
snapshots taken in equivalent time instants. Generalization further in time and change in speed can be clearly seen.

5. Conclusion

In this paper the problem of learning 2-dimensional spa-
tiotemporal behavior with cellular neural networks was ap-
proached. Due to the locality and space invariance of CNN
weights, the number of parameters to be optimized in these
networks is not large. The learning is thus considerably
easier favoring the use of global optimization methods to
avoid the need of an expression for the gradient of the
cost function. The generation of an efficient training set
for the CNN problem is not straightforward as in classical
trajectory learning and thus customized solutions need to
be devised. Therefore, a new cost function and methodol-
ogy was introduced for learning of spatiotemporal behav-
ior. This cost function assimilates time intervals also as
parameters to be optimized and with that also reduce the
importance of generating perfect training sets. This cost
function also allows for the learning of the desired behav-
ior at arbitrary speed of the dynamics. From an learning
example it was possible to show that the CNN could learn
and generalize the task at hand. Another important feature
shown in this example was the possibility to modify the
speed of an operation. A deeper exploration of this feature
is ongoing research but it is believed that existing CNN ap-
plications can benefit from faster execution by pushing the
template operations to its speed limit.
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