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Abstract—Seminal observations performed by Skarda

and Freeman [1] on the olfactory bulb of rabbits during

cognitive tasks have suggested to locate the basal state of

behavior in the network’s spatio-temporal dynamics. Fol-

lowing these neurophysiological observations, a new learn-

ing task for recurrent neural networks has been proposed by

the authors in recent papers [2], [3]. This task consists in

storing information in spatio-temporal dynamical attractors

of these artificial networks. Two innovative learning algo-

rithms are discussed and compared here, based on dynam-

ical considerations. Firstly an iterative supervised Heb-

bian learning algorithm were the all of the information is

fully specified. Secondly, an iterative unsupervised Heb-

bian learning algorithm were the network has to categorize

external stimuli, by building itself its own internal repre-

sentations.

1. Introduction

Since Hopfield and Grossberg precursor works ([4], [5]),

the privileged regime to code information in artificial nets

has been fixed point attractors. However, many neurophysi-

ological reports ([6], [7], [8], [9]) tend to indicate that brain

dynamics is much more “dynamical” than fixed point and

more faithfully characterized by cyclic and weakly chaotic

regimes instead. Based on these observations, the authors

have shown in previous works [10] how synaptic matrix

generated randomly allows to exploit cyclic attractors for

information encoding. An information is made of a pair of

data: the stimulus and the corresponding limit cycle attrac-

tor. Promising results were obtained showing both a high

encoding potential and a relation between this potential and

the chaotic dynamics’ presence in the network: high poten-

tial networks have stronger presence of chaotic dynamics.

To encode specific information, two different learning

tasks have been proposed in previous papers ([2], [3]). To

follow neurophysiological observations, the learning of the

synaptic matrix has been chosen to be based on local Heb-

bian mechanisms. Comparisons of these two algorithms,

based on dynamical observations, are performed in this pa-

per.

2. Description of the learning tasks and of the model

2.1. The model

The network is fully connected. Each neuron’s activation

is a function of other neurons’ impact and of an external

stimulus. The neurons activation f is continuous and is up-

dated synchronously by discrete time step. The activation

value of a neuron xi at a discrete time step n is:

xi(n + 1) = f (g neti(n))

neti(n) =
∑N

j=1 wi jx j(n) + wisιi
(1)

where N is the number of neurons (set to 25 in this pa-

per for legibility), g is the slope parameter, wi j and wis are

connections weight and ιi is the external stimulus for the

neuron i. The saturating activation function f is taken con-

tinuous (here tanh) to ease the study of the networks’ dy-

namical properties. To be able to compare binary patterns

with internal states of the continuous network, a filter layer

is added based on the sign function.

2.2. The learning tasks

Two different learning tasks are proposed. Both of them

consist in the storing of external stimuli in limit cycle at-

tractors of the network’s internal dynamics. In the first one,

each data stored in the network is fully specified a priori.

In the second one, the information is not fully specified

a priori: only the external stimuli are known before learn-

ing. It means that the limit cycle attractor ςµ,i associated

with an external stimulus χµ is identified through the learn-

ing procedure. This learning procedure can be viewed as

the ability of the system to create its own categories. Be-

fore learning, the data set is defined byDbl (bl standing for

“before learning”):

Dbl =
{

D1
bl, . . . ,D

q

bl

}

D
µ

bl
= χµ µ = 1, . . . , q (2)

After learning, the data set becomes:

Dal =
{

D1
al, . . . ,D

q

al

}

D
µ

al
=
(

χµ, (ςµ,1, . . . , ςµ,lµ)
)

(3)

lµ is the size of the cycle associated to the stimulus χµ.

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

586



3. Implementation of iterative Hebbian algorithms

3.1. The supervised Hebbian learning algorithm

This innovative algorithm has been described by the au-

thors in previous papers (see [2]). It is based on classical

iterative Hebbian algorithms described in [11]. The princi-

ple can be described as follows: at each learning iteration,

the stability of every nominal pattern ξµ, is tested. When-

ever one pattern has not reached stability yet, the respon-

sible neuron i sees its connectivity reinforced by adding a

Hebbian term to all the synaptic connections impinging on

it:
wi j 7→ wi j + εs ς

µ,ν+1

i
ς
µ,ν

j

wis 7→ wis + εb ς
µ,ν+1

i
χ
µ

i

(4)

where εs and εb respectively define the learning rate and

the stimulus learning rate.

This algorithm has been improved by adding explicit

noise during the learning phase: in order to not only store

the patterns, but also to ensure a sufficient enough content-

addressability, we had to “excavate” the basins of attrac-

tion. To compare the network’s continuous internal states

with bit-patterns, a filter layer quantizing the internal states

is added. It enables to perform symbolic investigations on

the dynamical attractors.

3.2. The unsupervised Hebbian learning algorithm

This innovative algorithm has been described by the au-

thors in a previous paper [3]. The main difference with the

supervised Hebbian algorithm lies in the nature of the in-

formation learned. In the supervised version, each informa-

tion to learn is given a priori and is fully specified. In the

unsupervised version, only the external stimuli are given

a priori, the information is a consequence of the learning.

In other words, the information is “generated” through the

learning procedure assigning a “meaning” to each exter-

nal stimulus: the learning procedure enforces a mapping

between each stimulus of the data set and a limit cycle at-

tractor of the network’s inner dynamic, whatever it is.

Inputs of this algorithm are a data set Dbl to learn (see

Equation 2) and a range [mincs, maxcs] which defines the

bounds of the accepted periods of the limit cycle attrac-

tors coding the information. This algorithm can be broken

down in two phases which are constantly iterated until con-

vergence:

1. proposal of an attractor code for each stimulus χµ:

the network is stimulated by χµ, consequently trap-

ping it in an attractor outputµ. To constrain the net-

work as little as possible, the meaning assigned to

the stimulus χµ is obtained by associating it with a

new version of the attractor outputµ, called cycleµ, re-

specting the periodic bounds [mincs, maxcs] and being

“original”1;

1original means that each pattern composing the limit cycle attractor

must be different from all patterns of the data set

2. learning the information:

once all new attractors cycleµ have been proposed,

there will be tentatively learned by relying on a su-

pervised procedure. However, only a limited number

of iterations of the supervised algorithm is performed

in order to avoid constraining the network too much.

It has to be noted that this learning mechanism implicitly

supplies the network with an important robustness to noise.

First of all, the coding attractors are the ones naturally pro-

posed by the network. Secondly, they need to have large

and stable basins of attraction in order to resist the process

of trials, errors and adaptations.

4. Encoding capacity

The number of information that can be learned in an ac-

ceptable amount of time in RNNs’ limit cycle attractors

through the supervised and the unsupervised algorithms

have already been discussed in previous works ([2] and

[3]). The main results are briefly summarized below.

It has been demonstrated how the unsupervised learning

outperforms its supervised counterpart: the storing capac-

ity can be enhanced by a factor larger than six. By studying

and comparing the robustness to the noise injected in the

external stimulus and in the initial states, it has been shown

that again, the unsupervised learning algorithm consider-

ably improves robustness.

5. Dynamical considerations

Tests performed here aim at analyzing the so-called

background or spontaneous dynamics obtained when the

network is feeded with other external stimuli than the

learned ones. Quantitative analyses have been performed

using two kinds of measures: the mean Lyapunov expo-

nent2 and the probability to have chaotic dynamics. Both

measures come from statistics on a huge number (here

1000) of learned networks. For each learned network, dy-

namics obtained from 1000 randomly chosen external stim-

uli and initial states have been tested.

Figure 1 compares the chaotic dynamics’ presence in 25-

neurons networks learned with different data set of period-4

cycles by plotting the mean value of the first Lyapunov ex-

ponent and the probability to have chaotic dynamics. This

figure demonstrates how networks learned through the su-

pervised algorithm are becoming more and more chaotic

while the learning task is strengthened. In the end, the

probability of falling in a chaotic dynamics is equal to one,

with huge mean Lyapunov exponents. In the unsupervised

case, when networks are asked to categorize the stimuli us-

ing their own representations, even after learning a huge

2The computation of the first Lyapunov exponent is done empirically

while the computation of the Lyapunov spectrum is performed through

Gram-Schmidt re-orthogonalization of the evolved system’s Jacobian ma-

trix (which is estimated at each time step from the system’s equations).

Both methods have been initially proposed by Wolf [12].
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Figure 1: Impact of the learning algorithm on the complex-

ity of the global dynamics. The mean Lyapunov exponent

and the probability to have chaotic dynamics of learned net-

works are plotted in function of the learning sets’size. Cir-

cles are associated to supervised learned networks while

squares are associated to unsupervised learned networks.

N=25.

amount of data, networks do not become fully chaotic, and

chaotic dynamics obtained have smaller Lyapunov expo-

nents.

Figure 2 compares Lyapunov spectra obtained from

chaotic dynamics occurring in learned networks. Lyapunov

spectra obtained in supervised learned networks are char-

acteristic of deep chaos or hyper-chaos. In hyper-chaos

[13] the presence of more than one positive Lyapunov ex-

ponent is expected and these exponents are expected to be

huge. By contrast, Lyapunov spectra obtained in unsuper-

vised learned networks are the characteristic of a frustrated

chaos. In this type of chaos, the dynamics is attracted

to learned memories –which is indicated by negative Lya-

punov exponents– while in the same time it escapes from

them –which is indicated by the presence of at least one

positive Lyapunov exponent. However, this positive Lya-

punov exponent must be only slightly positive in order not

to erase completely the system’s past history and thus to

keep traces of the learned memories. This regime of frus-

tration is increased by some modes of neutral stability indi-

cated by the presence of many exponents whose values are

close to zero [13].
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(a) Sup learning-12 size-2 cycles
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(b) Unsup learning-50 size-2 cycles

Figure 2: These figures show the ten first Lyapunov ex-

ponents. Each time, 10 different learning sets have been

tested. For each obtained network, 100 chaotic dynamics

have been studied. N=25.

Further evidences are obtained from return maps analy-

sis. In Figure 3, it appears that networks having learned

in a supervised way too many information show presence

of very uninformative deep chaos similar to white noise.

In other words, having too many competing limit cycle at-

tractors leads to unstructured dynamics. The unsupervised

Hebbian learning instead preserves more structure in the

chaotic dynamics and leads to a form of chaos called frus-

trated chaos [14]. It is a dynamical regime which appears

in a network when the global structure is such that local

connectivity patterns responsible for stable and meaningful

oscillatory behaviors are intertwined, leading to mutually

competing attractors and unpredictable itinerancy among

brief appearance of these attractors. In this paper, this

chaos appear after Hebbian learning the cycles associated

to stimuli.

(a) Sup learning-6 size 4 cycles (b) Unsup learning-16 size 4 cycles

Figure 3: Return map comparisons between an hyper-chaos

and a frustrated chaos It has been obtained after . N=25

Figure 4 compares a deep chaos and a frustrated chaos

by plotting the probability of presence of the nearby limit

cycle attractors in chaotic dynamics. In both figures, 25-

neurons networks have learned 4 data in limit cycles attrac-

tors of size 5. The use of the supervised Hebbian algorithm

(left figure) hardly constrains the network and, as a conse-

quence, chaotic dynamics appear very uninformative: by

shifting the external stimulus from one attractor to another

one, the chaos in-between has lost any information con-

cerning these two limit cycle attractors. In contrast, when

learning using the unsupervised algorithm (right figure),

when driving the dynamics by shifting the external stimu-

lus from one attractor to another one, the chaos encountered

on the road appears much more structured: strong presence

of the nearby limit cycles is easy to observe.

6. Conclusion and future works

This paper aims at comparing two ways to code the in-

formation in the network’s cyclic dynamics by relying on

innovative iterative Hebbian algorithms. In the first way,

stimuli are encoded in a priori specified cyclic attractors of

the network’s dynamics. In the second way, the network

create by itself its own internal representations to be asso-

ciated with the stimuli: the semantics of the information is

left unprescribed until the learning occurs. Based on the en-

coding capacities, the superiority of the unsupervised way

to encode the stimuli is clearly demonstrated. Based on

dynamical analyses of learned networks when feeded by

unlearned external stimuli, iterative Hebbian learning can
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(a) Supervised learning

(a) (b)

0 20 40 8060 100

1.0

0.8

0.6

0.4

0

0.2

Sitimulus variation

%
 r

e
co

v
er

y
 c

y
cl

e

(b) Unsupervised learning

Figure 4: Probability of presence of specific limit cycle at-

tractors when the external stimulus is slowly shifted be-

tween two external stimuli previously learned (region (a)

and (b)). The network’s dynamics goes from the limit cy-

cle attractor associated to the former stimulus to the limit

cycle attractor associated to the latter stimulus. In between

chaos shows up, which turns out to be “frustrated” in the

unsupervised case. N=25.

be seen as an alternative road to chaos: the more informa-

tion the network has to store the more chaotic it sponta-

neously tends to behave. However, when relying on su-

pervised Hebbian learning, the background chaos spreads

widely and adopts a very unstructured shape similar to

white noise. In contrast, unsupervised learning, by being

more ”respectful” of the network intrinsic dynamics, main-

tains much more structure in the obtained chaos. It is still

possible to observe in the chaotic regime the traces of the

learned attractors. This complex but still very informative

regime has been called the “frustrated chaos”.

In current works, to stay in line with neurophysiological

observations were a robust correlation is observed between

behavioral states and transient periods of synchronization

of oscillating neuronal discharges in the frequency range

of gamma oscillations [8], [15], [9], [16], we propose to re-

trieve the information stored in the cycles of the network’s

internal dynamics by relying on synchronization occurring

between neuronal groups. We have already demonstrated

that the synchronization picture associated with a frustrated

regime keeps traces of the neuronal groups characterizing

the two nearby limit cycle attractors. Because the static

synchronization picture compresses some information of

the system’s past history, we propose to use it in future

works as the basal information in more complex neuronal

architectures.
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