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Abstract—Mesoscopic level neurodynamics study the
collective dynamical behavior of neural populations. Such
models are becoming increasingly important in understand-
ing large-scale brain processes. Mesoscopic dynamics ex-
hibit aperiodic oscillations with a much more rich dynam-
ical behavior than fixed-point and limit-cycle approxima-
tion allow. Far from being an undesired behavior to be sup-
pressed, researchers are beginning to explore the idea that
aperiodic dynamics may be essential to the fast recognition
and large capacities of biological memories. In this paper
we discuss one such mesoscopic population model, based
on Freeman’s original K-set formulation. This model repli-
cates the aperiodic behavior observed in biological brains.
We are using this model to construct robot controllers that
utilize such rich dynamics as their mechanisms for form-
ing meanings and acting on past experiences. In this pa-
per we introduce a discrete approximation of the original
K-set continuous ODE model. We develop the discrete
time model and compare its dynamical behavior in the so
called K-III realm with the continuous ODE model. We
then demonstrate its usefulness as a biologically inspired
robot controller.

1. Introduction

K-sets, developed by Walter J. Freeman [7, 1], model
the dynamics of the mean field (e.g. average) amplitude
of a neural population. A single neural population is de-
scribed by a second order, ordinary differential equation.
An asymmetric, sigmoidal transfer function provides the
nonlinear interaction between collections of such popula-
tion units. Hierarchies of K-sets have been used to model
the aperiodic, chaotic like dynamics observed in percep-
tual and cortical areas of the brain. The description of the
K-set hierarchies are biologically motivated, and building
up increasingly complex relations of recurrent, feedback
relations at the K-II and K-III level produces models of the
aperiodic dynamics of perceptual and cortical areas of the
brain.

In this paper we develop an iterative version of the K-
set neurodynamical population model. Our motivation is
to develop a discrete model that replicates the dynamics

of the K-sets, but in a simpler, more tractable form. The
discrete simplification is useful in many areas, including
the development of neural controllers for robotic agents, to
explore the importance of mesoscopic neural dynamics in
producing behavior.

A discrete time K-set model has many advantages over
using coupled sets of continuous ODE’s. Networks of
such discrete dynamical components are self-contained and
require no rewriting of global state equations, like those
needed in solving networks of coupled ODE’s. Since units
are so self-contained in the discrete version, they are eas-
ily incorporated into standard neural network packages and
robot simulators as basic units. Further, discrete units usu-
ally are much more efficient and will therefore be capa-
ble of performing much faster, or developing much bigger
controller models, than using the corresponding continu-
ous versions. We present our development of the discrete
approximation and then show that the model is capable of
replicating the types of chaotic dynamics observed in bio-
logical brains.

2. Discrete K-Sets Model

2.1. K-Sets: Continuous Differential Equation Model

The K-set dynamics were developed to model the dy-
namics of the mean field (e.g. average) amplitude of a
neural population. A nonlinear, second order, ordinary dif-
ferential equation was developed to model the dynamics
of such a population. The parameters for this equation
were derived by experimentation and observation of iso-
lated neural populations of animals prepared through brain
slicing techniques and chemical inhibition. The isolated
populations were subjected to various levels of stimulation,
and the resulting impulse response curves were replicated
by the K-set equations.

The basic ODE equation of a neural population of the
K-model is:

αβ
d2ai(t)

dt2
+ (α + β)

dai(t)

dt
+ ai(t) = neti(t) (1)

In this equation ai(t) is the activity level (mean field am-
plitude) of the ith neural population. α and β are time con-
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stants (derived from observing biological population dy-
namics to various amounts of stimulation). The left side
of the equation expresses the intrinsic dynamics of the K
unit (which captures a neural populations characteristic re-
sponses).

On the right side of the equation are factors that allow for
external network input to the population neti(t) Stimula-
tion between populations is governed by a nonlinear trans-
fer function. The nonlinear transfer function used in the
K-models is an asymmetric sigmoid that was again derived
through measurements of the stimulation between biologi-
cal neural populations:

neti(t) =
∑

j

wijoj(t) (2)

oj(t) = ε{1 − exp[
−(eaj(t) − 1)

ε
]} (3)

See [1, 2] for a more complete description of the basic K-
Set model.

The previous ODE and transfer function define the ba-
sic population unit and the dynamics governing the spread-
ing of activation between populations. The real modeling
power of the K-Sets is achieved by a biologically motivated
definition of a hierarchy of relations, known as the K-set
hierarchy. Connecting 4 interacting K units together with
positive and negative feedback forms a K-II unit, which
is capable of oscillatory behavior, both continuous and
damped. K-II units of different frequencies connected to-
gether will keep one another from ever agreeing on a par-
ticular frequency, thus generating frustrated chaos. The K-
III level of the hierarchy forms the basic unit for produc-
ing aperiodic dynamics, and for use as a model of chaotic
memories.

2.2. KA-Sets: Discretization of Continuous K-Sets

The purpose of the discretization is to develop a model
more useful in simulations with autonomous agents, thus
we name it KA. We use a method for determining a dis-
crete approximation of a sampled continuous time signal
[4]. Principe et. al. [6] presents an alternative discretiza-
tion based on decomposition of alpha-kernels method. The
discretization presented here is more compact (thus slightly
more efficient), and straightforward.

We will use the dynamics produced by the K-0 set (equa-
tion 1) as the signal that is to be approximated. The signal
will be approximated using a second-order difference equa-
tion, where we look back 2 discrete time steps to develop
the approximation. Equation 4 is the difference equation to
be used.

y(t) = a1y(t−1)+a2y(t−2)+b1u(t−1)+b2u(t−2) (4)

Here y is the signal at some discrete time step and u is an
external input being fed into the system. The signal y at
time t will be computed based on the signal at y(t − 1)

and y(t − 2). We also use the input into the system in
two previous time steps u(t − 1) and u(t − 2). Our task
is to find values for the parameters a1, a2, b1 and b2 so
that the difference equation approximates the dynamics of
a sampled signal.

At any given time step t, the approximation in Equation
4 plus some ε error value will equal the actual signal. We
can write this as a summation:

y =

P
∑

j=1

βjXj + ε (5)

β1 = a1 β2 = a2 β3 = b1 β4 = b2

X1 = y(t − 1)X2 = y(t − 2)

X3 = u(t − 1)X4 = u(t − 2)

where P is 4 approximating using a second-order difference
equation (since we have 4 parameters). Xj are the signal
and input to the system in the previous two time steps, and
βJ are the parameters we are to determine.

From Equation 5 we can see that the error for a single
particular time step is ε = y −

∑

βX . Our task, how-
ever, is to develop an approximation for all of the sampled
time steps, not simply a single time step. We can write an
equation for the sum squared error as:

S =

N
∑

i=1

(yi −

P
∑

j=1

βjXij)
2. (6)

Here we have N discrete sampled time steps, and S, the
sum squared error, is the sum of the errors squared. Equa-
tion 6 can be rewritten in matrix form as:

S = (Y − XB)T (Y − XB) (7)
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Equation 7 gives the error of a discrete approximation,
given the β parameters. We are attempting to find the best
discrete approximation, therefore we are trying to mini-
mize the error S. Taking S to be 0 in Equation 7, we can
solve the matrix equation for the B parameters:

B̂ = (XT X)−1XT Y (8)

Equation 8 states that, in order to get the error S as close to
0 as possible, B needs to equal (XT X)−1XT Y . Y is the
signal we are trying to approximate, and X can be found if
we know the previous values of Y at sampled time steps,
and also previous inputs to the system in sampled time
steps.

With Equation 8 we only need a sampled signal, and
recordings of external stimulation, to create an approxi-
mation. Using the K-0 Equation 1 we generate a sample
time series. We create a representative signal of the K-
0 dynamics by varying duration of stimulation from 1 to
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Figure 1: Comparison of continuous K-II signal (top) with
the KA-II discrete approximation (bottom).

50ms in 1ms increments, and intensity of stimulation from
-0.5 (inhibition) to 0.5 (excitation) in 0.01 increments. We
simulate all combinations of intensity and duration of the
external stimulation to the K-0. The external stimulation
represents the external input to the system (u in Equation
4), and the activation of the K-0 unit represents the signal
we are approximating (y in Equation 4). The sample K-0
signal and inputs were recorded and used to solve for B̂

in Equation 8. The values of the parameters that were de-
termined to give the least square error for the KA discrete
approximation are shown in Table 1.

Table 1: KA Discrete Approximation Parameter Results

a1 1.6198
a2 -0.6497
b1 0.0234
b2 0.0059

2.3. KA Discrete Dynamics Comparison

As a demonstration of the KA discrete approximation,
we simulate a K-II and compare the signal with a KA-
II system configured with the same values. A K-II is a
combination of 4 K-0 units with mutually excitatory and
inhibitory feedback. Figure 1, left, shows the results of
this comparison. In both systems wee = 0.3, wei = 5.0,
wie = 0.2 and wii = 0.25. Also both models were started
at the same initial conditions. The K-II, simulated in Mat-
lab on a Pentium III 2.0Ghz using Matlab’s ode45 function,
takes 191.57 seconds of CPU time to simulate 12 seconds.
The KA-II approximation on the same system takes 52 sec-
onds to simulate the same 12 seconds of activity.

As shown in Figure 1, the KA discretization approxi-
mates the K-set model fairly well. This good approxima-

Figure 2: Comparison of power spectrum from rat (top)
with continuous K-III model power spectrum (middle) and
that of a KA-III discrete approximation (bottom). (Top and
Middle figures taken from [5]).

tion occurs even though we are simulating a more com-
plex network of 4 neural populations connected with var-
ious levels of positive and negative feedback among the
units. The dynamics produced by the discretization remain
relatively close to the desired system even in a system of
units, even though it was only created using a sampled sig-
nal from the dynamics of a single unit.

The KA discrete approximation also works well at the
level III of the K-set hierarchy, where aperiodic dynamics
are produced that model those seen in biological brains.
Figure 2, right, compares a power spectrum distribution
from a rat to that of the original K-III aperiodic signal, and
that produced by a KA-III. The power spectrum of the KA
discretization matches that generated by the K-III in terms
of a peak of power around the 40Hz range, and a slope of
the power spectrum close to -2.

3. KA Robotic Controller

In this experiment we use a Khepera robotic agent in a
virtual environment to demonstrate the use of the KA dis-
cretization as a controller. The task we choose is similar to
that explored in the original Distributed Adaptive Control
models of Verschure, Kröse and Pfeifer [8].

In this experiment, the goal of the agent is to learn to
associate long-range distance sensory information with be-
haviors to learn to trigger avoidance behaviors at a distance,
before the agent actually bumps into the obstacle. There-
fore in the robots control architecture we also have a set of
units that are connected to the long range infra-red distance
sensors . The distance sensors can sense obstacles at a dis-
tance from the robot. Six KA-0 units are connected to the
normal output of the distance sensors (DS1−6 connected to

604



Figure 3: A comparison of typical paths created by the
Hülse-Pasemann neural Schmitt trigger (Left) and the KA
units (Right).

S1−6) while six other KA-0 are connected to the inverse of
the indicated distance sensor (DI1−6 connected to S7−12).
The inverse of a distance sensor is maximally active when
no obstacle is detected, and is minimally active when the
sensor is right next to an obstacle. Initially the 12 sensory
KA-0 are fully connected to each other with small random
weights . Also the 12 KA-0 are fully connected to each
of the 3 basic motor behaviors (Turn Left, Turn Right and
Move Fwd) again with small random weights.

We use Hebbian learning and habituation on the connec-
tions between the ’Sensory’ units and from the ‘Sensory’ to
the ’Motor’ units. Since these connections are initially ran-
dom, typically they do not affect the behavior of the robot
in the beginning. The reflexes cause the robot to move
around in the environment. Later on the robot may bump
into something on its left. This will cause some of the Mo-
tor behaviors to be performed, such as turning right. Since
the Sensory units that are connected to sensors on the left
side of the body have become stimulated while approach-
ing the obstacle, they remain highly active when the right
turn behavior is activated. This allows the strength of the
connection between the Sensory unit for detection of ob-
stacles on the left and the right turn behavior to become
strengthened due to Hebbian modification because of their
co-occurring excitation.

Figure 3 displays a comparison of typical paths gener-
ated in an environment using the KA architecture described
previously and compared to the architecture using the dy-
namical Hülse-Pasemann Schmitt Triggers (HPST) [3]. We
use the KA units after they have adequately learned obsta-
cle avoidance, at which point we freeze the weights, similar
to the evolved weights learned for the HPST. In general, the
KA exhibits comparable performance as the HPST in this
environment.

4. Conclusion

The discrete KA model presented here is capable of dis-
playing all of the interesting dynamics produced by the
continuous-time K models. Given similar parameter set-
tings, the KA discretization replicates the dynamics of a
similarly configured K model at the K-II level, with four
units of recurrently connected excitatory and inhibitory
units. Further, the KA discretization is capable of gener-
ating frustrated chaos observed at the K-III level of the hi-
erarchy.

The KA discretization has many benefits as use for a
modeling tool when compared to using the continuous
model. The units are self-contained and may thus be used
easily in standard neural network and robotic simulation
packages. The units are also more efficient than solving
continuous ODEs using approximation methods such as
Runge-Kutta. We have shown in this paper that the dis-
crete units may be used to build controllers for autonomous
robots. We are currently exploring the natural production
of aperiodic dynamics in such controllers, and study how
they might benefit an agent in performing its behavioral
tasks in a complex environment.
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