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Abstract—Recurrent spiking neural networks can
provide biologically inspired model of robot controller.
We study here the dynamics of large size randomly
connected networks thanks to ”mean field theory”.
Mean field theory allows to compute their dynamics
under the assumption that the dynamics of individ-
ual neuronsare stochastically independent. We restrict
ourselves to the simple case of homogeneous centered
gaussian independent synaptic weights. First a theo-
retical study allows to derive the mean-field dynamics
using a large deviation approach. This dynamics is
characterized in function of an order parameter which
is the normalized variance of the coupling. Then vari-
ous applications are reviewed which show the applica-
tive potentiality of the approach.
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1. Introduction

Recurrent neural networks were introduced to im-
prove biological plausibility of artificial neural net-
works as perceptrons since they display internal dy-
namics. They are useful to implement associative re-
call. The first models were endowed with symmetric
connexion weights which induced relaxation dynamics
and equilibrium states as in [8]. Asymmetric connex-
ion weights were further introduced which enable to
observe complex dynamics and chaotic attractors. The
role of chaos in cognitive functions was first discussed
by W.Freeman and C.Skarda in seminal papers as [11].
The practical importance of such dynamics is due to
the use of on-line hebbian learning to store dynamical
patterns. More recent advances along that direction
are presented in the present conference [7].

The nature of the dynamics depends on the connex-
ion weights. When considering large size neural net-
works, it is impossible to study the dynamics in func-
tion of the detailed parameters. One may consider that
the connexion weights share few values, yet, the effect
of the variablility cannot be studied by this approach.
We consider here large random models where the con-
nexion weights form a random sample of a probability

law. These models are called ”Random Recurrent Neu-
ral Networks”(RRNN). In that case, the parameters of
interest are the order parameters i.e. the statistical pa-
rameters. Then the dynamics is amenable because one
can approach it by ”Mean-Field Equations” (MFE) as
in Statistical Physics. MFE were introduced for neu-
ral networks by Amari [1] and Crisanti and Sompolin-
sky [12]. We extended their results [4] and used a new
approach to prove it in a rigorous way [10]. This ap-
proach is the ”Large deviation Principle” (LDP)
and comes from the rigorous statistical mechanics [2].
We developped it for analog neuron model. We show
here how it can be extended to spiking neural net-
works.

2. Random Recurrent Neural Networks

2.1. The neuron free dynamics

We consider here discrete time dynamics with finite
horizon. The state of an individual neuron i at time t
is described by the membrane potential ui(t) ∈ R. For
commodity, we shift it by the neuron firing thresh-
old θ. So the trajectory of the potential of a single
neuron is a vector of F = R{0,1,...,T}. First let us
consider the free dynamics of a neuron. We introduce
(wi)(t))t∈{1,...,T} which is a sequence of i.i.d. centered
Gaussian variables of variance σ2. This sequence is
called the synaptic noise of neuron i and stands for
all the defects of the model; σ is an order parameter
which is small. We shall consider three types of neu-
ron: binary formal neuron (BF), analog formal neuron
(AF) and integrate and fire neuron (IF). For BF and
AF neuron, the free dynamics is given by the following
equation

ui(t + 1) = wi(t + 1) − θ (1)

For IF neuron, the free dynamics is given by

ui(t + 1) = ϕ[ui(t) + θ)] + wi(t + 1) − θ (2)

where γ ∈]0, 1[ is the leak and where ϕ is defined by

ϕ(u) =
{

γu if ϑ
γ < u < θ

ϑ else
(3)
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ϑ is the reset potential and ϑ < 0 < θ. Let P be the
distribution of the state trajectory of the neuron under
the free dynamics. For a given initial distribution m0,
it is possible to explicit P for BF and AF neurons:

P = m0 ×N (−θ, σ2)⊗T (4)

2.2. The synaptic potential of RRNN

To define the network dynamics, one has to intro-
duce the activation variable xi(t) of the neuron at time
t. For BF and IF neurons xi(t) = 1 if and only if neu-
ron i emits a spike at instant t, otherwise xi(t) = 0.
For AF neurons xi(t) ∈ [0, 1] represents the mean firing
rate. In any case, xi(t) is a non-linear function of ui(t)
according to xi(t) = f [ui(t)] where f is the transfer
function of the neuron equal to the Heaviside function
for BF and IF neurons and to the sigmoid function
for AF neuron). Let us note u = (ui(t)) ∈ FN the
network trajectory. The spikes are used to transmit
information to other neurons through the synapses.
Let us note J = (Jij) the system of synaptic weights.
The synaptic potential of neuron i of a network of N
neurons at time t+1 is a vector in F which is expressed
in function of J and u by{

vi(J , u)(0) = 0
vi(J , u)(t + 1) =

∑N
j=1 Jijf [uj(t)]

(5)

For size N RRNN model with gaussian connexion
weights, J is a normal random vector with N ( υ

N , υ2

N )
independent components. Notice that the RRNN
model properties can be extended to a more general
setting where the weights are non gaussian and depend
on the neuron class in a several population model [5]

When u is given, vi(., u) is a gaussian vector in
F ; its law is defined by its mean and its covari-
ance matrix. Notice that these parameters depend
only of the empirical distribution on F defined by
µu =

∑N
i=1 δui ∈ P(F). They are invariant by any

permutation of the neuron potential.
For µ ∈ P(F) let us denote by gµ the normal distri-

bution on RT with moments mµ and cµ:{
mµ(t + 1) = υ

∫
f [η(t)]dµ(η)

cµ(s + 1, t + 1) = υ2
∫

f [η(s)]f [η(t)]dµ(η) (6)

Proposition 1 The common probability law of the in-
dividual synaptic potential trajectories vi(., u) is the
normal law gµu where µu is the empirical distribution
of the network potential trajectory u.

2.3. The network dynamics

Then the state of neuron i at time t is updated ac-
cording to a modification of equation (2) for AF and
BF models (resp. (3) for IF models) where the noise
wi(t + 1) is replaced by vi(t + 1) + wi(t + 1) for each
t. So gaussian vector computations lead to

Theorem 2 Let QN ∈ P(FN ) be the probability law
of the network potential trajectory for RRNN. QN is
absolutely continuous with respect to the law P⊗N of
the free dynamics and dQN

dP⊗N (u) = expNΓ(µu) where
the functional Γ is defined on P(F) by

Γ(µ) =
∫

log{
∫

exp 1
σ2

∑T−1
t=0

[
Φt+1(η)ξ(t) − 1

2ξ(t)2
]

dgµ(ξ)}dµ(η)
(7)

with

• for AF and BF models: Φt+1(η) = η(t + 1) + θ

• IF model: Φt+1(η) = η(t + 1) + θ − ϕ[η(t) + θ]

The law of the empirical measure in the free model is
just the law of an i.i.d. N -sample of P . An imme-
diate consequence of the theorem is that exp NΓ(.) is
the density of the law of the empirical measure in the
RRNN model with respect to the law of the empirical
measure in the free model.

3. The mean-field equation

3.1. The basis of LDP approach

Our objective is to compute the limit of the random
measure µu when the size N of the network goes to
infinity. By the Sanov theorem we know that in the
free dynamics model µu satisfies a Large Deviation
Principle (LDP) with the cross-entropy I(µ, P ) as a
good rate function and thus converges exponentially
towards P . So the consideraton of Sanov theorem and
of theorem 2, leads us to the following statement

Large deviation principle Under the law QN of
the RRNN model µu satisfies a LDP principle with
good rate function H defined by H(µ) = I(µ, P )−Γ(µ)

Actually, the rigorous proof is quite technical and
some additional hypothesis and approximations are
necessary to follow the approach of [2]. The math-
ematical proof for AF RRNN is detailed in [10]. The
keypoint is that for all RRNN models, it is possible to
explicit the minimum of the rate function.

3.2. The mean-field propagation operator

Suppose that the ui are iid according to µ. Then,
from the central limit theorem, the law of the vi is gµ

in the limit of large networks. So if we feed a trajectory
with a random synaptic potential distributed accord-
ing to gµ, we obtain a new probability distribution on
F which is noted L(µ).

Definition 1 Let µ a probability law on F such that
the law of the first component is m0. Let u, w, v be
three independent random vectors with the respective
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laws µ,N (0, σ2IT ), gµ. Then L(µ) is the probability
law on F of the random vector ϑ which is defined by{

ϑ(0) = u(0)
ϑ(t + 1) = v(t + 1) + w(t + 1) − θ

(8)

for the formal neuron models (BF and AF), and by{
ϑ(0) = u(0)
ϑ(t + 1) = ϕ[u(t) + θ)] + v(t + 1) + w(t + 1) − θ

(9)
for the IF neuron model.The operator L on P(F) as
defined above is called the mean-field propagation op-
erator

Then we have

Proposition 3 The density of L(µ) over P is∫
exp

1
σ2

T−1∑
t=0

[
−1

2
ξ(t + 1)2 + Φt+1(η)ξ(t + 1)

]
dgµ(ξ)

It is clear from the construction of L that LT (µ) =
µ0 is a fixed point of L which depends only on the
distribution m0 of the inital state. From the previous
proposition, we get

Theorem 4 We have I(µ0, P ) = Γ(µ0) and so
H(µ0) = 0

Provided that µ0 is the only minimum of H, this last
theorem shows that the random sequence (µu)N con-
verges exponentially in law to µ0 when N → ∞

3.3. The main results of MFE theory

The independence of the (ui) has been used to build
the mean-field propagation operator but it cannot be
checked exactly since the neuron states are correlated.
The LDP principle allows to prove rigorously the prop-
agation of chaos property. It amounts to the asymp-
totic independence of any finite set of individual tra-
jectories.

Propagation of chaos property Let h1,...hn be
n continuous bounded test functions defined on F , we
have when N → ∞

E[h1(u1)...hn(un)] →
n∏

i=1

∫
hi(η)dµ0(η) (10)

An important consequence of the exponential conver-
gence is the almost sure weak convergence. This result
allows to use MFE for statements that relies on a single
large network.

Theorem 5 Let h be a continuous bounded test func-
tion defined on F , we have when N → ∞

1
N

N∑
i=1

h(ui) →
∫

h(η)dµ0(η) a.s. (11)

Remark: The mathematical derivations of the pre-
vious results from LDP may be found in [10]. They
are available for continuous test functions. For spik-
ing neurons, the transfer function is not continuous, so
we have to use a regular approximation of f to apply
the previous theorems. Though this approximation
cannnot be uniform, it is sufficient for the applications.

4. Applications to the dynamical regime of
RRNN

The mean-field equations are used to predict the
spontaneous dynamics of RRNN and to implement
learning process on the ”edge of chaos”.

4.1. BF RRNN

For formal neurons, it is clear from (8) that L(µ) is
gaussian. Moreover in the case of BF RRNN, the law
of L(µ)(t + 1) depends only on xµ(t) =

∫
f [η(t)]dµ(η)

which is the mean firing rate at time t. Thus, if we set
F (θ) = 1√

2π

∫ ∞
θ

e−
u2
2 du we have

xL(µ)(t + 1) = F

(
θ − υxµ(t)√
υ2xµ(t) + σ2

)
(12)

So it is possible to get from the fixed point of that
recurrence equation a bifurcation map. Three regimes
appear: a ”dead one” where there is no firing, an inter-
mediate one with a stable firing rate and a ”saturated”
one with a firing rate equal to 1. The dead regime
and the saturated regime are absolute if σ = 0. They
tend to disappear when the variability of the connex-
ion weights is increasing. Note that this approach is
supposing the commutation of time limit and size limit
since the mean-field theory was justified for finite-time
horizon. Simulations with N = 100 are in a complete
agreement with the theoretical predictions and the sta-
tionary regime is reached within few time iterations.

4.2. AF RRNN

The results of the theory have been widely extended
in [10]. First the hypothesis of gaussian connection
can be dropped if it is replaced by an hypothesis of
sub-gaussian tails for the distribution of the connex-
ion weights. MFE can be written which describes the
evolution of the empirical distribution of the network
activity along time [4]. Thus, the distribution of the
individual activities at a given time does not contain
enough information about the nature of the dynamics.
It may be stationary while the neuron states are stable
or while the individual neurons describe synchronous
or asynchronous trajectory. We are interested in the
dynamic regime of the detailed network in the low-
noise limit. A relevant quantity for that purpose is the
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evolution equation of the distance between two trajec-
tories along time [6],[3]. Two initial states are selected
independently and the dynamics are similar with the
same configuration parameters and independent low
noise. Then a mean-field theory is developped for the
joint law of the two trajectories and allow to study the
evolution of the mean-quadratic distance between the
two trajectories in the low-noise limit. A limit equal
to 0 is characteristic of a fixed point, a non-zero limit
is the signature of the chaos. These informations may
be recovered by the the study of the asymptotic co-
variance of the MFE for a single network.

For instance we applied this approach to predict
the behaviour of a 2 population model (excitatory/
inhibitory) in [5]. It was studied in detail with the fol-
lowing order parameters (the index label the presynap-
tic and the postsynaptic population: g is quantifying
the non-linearity of the transfer function of the AF
RRNN, d is quantifying the inhibitory or excitatory
character of the two populations. d = 0 amounts to
the one-population model. Four asymptotic regimes
exist: a stable fixed point regime, a stable periodic
regim, a chaotic stationary regime and a cyclostation-
ary chaotic regim. Simulation results and theoretical
predictions were in good agreement.

4.3. IF RRNN

Mean-field theory is generally considered as a good
approximation for IF RRNN [9]. Actually, the detailed
model and the mean-field dynamics exhibit a transi-
tion from a zero mean-firing rate to a non-zero mean-
firing rate when the standard deviation of the connex-
ion weight is increasing. When the lack is growing to
one, the critical standard deviation which induces a
non-zero firing rate is growing. Still, there is a good
quantitative agreement between simulations and the-
oretic MFE predictions. Yet, one is obliged to com-
pute MFE predictions to use Monte-Carlo algorithms
to simulate MFE dynamics. Another way of using the
mean-field assumption to predict the firing-rate value
is to model the synaptic potential as a random sum of
independent random variables using Wald identities.
It is developped in [9] and allows to predict the the-
oretical mean-firing rate without using Monte-Carlo
simulations.

5. Perspectives

A general framework was proposed to study Ran-
dom Recurrent Neural Networks using mean-field the-
ory. It allows to predict simulation results for large
size random recurrent neural network dynamics. IF
RRNN models deserve further investigation. Notably,
the model of random connections is far from biological
models and random connectivity has to be tested.
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