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Abstract— A technique for designing nonautonomous chaos
generators capable of producing multiple attractors is pre-
sented. The technique is based on proper multi-level-logic
pulse-excitation. A forced Van der Pol equation and a forced
active tank resonator are given as design examples.

I. INTRODUCTION

The generation of multiple chaotic attarctors distant but
statuary in space from a principle chaos generating engine
(chaotic oscillator) has been a topic of both theoretical and
practical interest [1]-[5]. Most of the effort was directed to-
wards the generation of multi-scroll attractors due to the
familiarity with the famous double-scroll attractor whether
generated from the original Chua’s circuit [2] or more gen-
eral models and circuits [6], [7]. In all, the idea is to intro-
duce multiple break-points in the nonlinear folding function
within the chaos generator. Each break-point sets a unique
equilibrium point in space around which chaotic trajecto-
ries evolve. This technique, employed in [1]-[5] and similar
works, is basically a static DC approach where the number
of possible equilibrium points is limited by the DC supply.

In [8] and [9], it was shown that equilibrium points with
fixed positions in space can also be generated by using a
binary pulse-exciting source without adding break-points
to the internal nonlinearity, which in [8] and [9] was kept as
a two-level-logic digital inverter. With this approach, the
resulting chaos generators are classified as nonautonomous.

In this work, we show that multiple chaotic attrac-
tors can be generated by suitably introducing a composite
multi-level-logic pulse-exciting source into a chaotic oscil-
lator structure. The number of equilibrium points depends
on both the number of logic levels, which in turn depend
on the number of frequencies of the generating sources and
their amplitudes. Two design examples are given and ex-
perimentally verified.

II. MuLTI-LEVEL LOGIC EXCITATION

First, we demonstrate the generation of multi-scrolls
from a forced Van der Pol equation by using a multi-logic-
level exciting source. The classical Van der Pol equation is
given by

&+ f(z)d + 2= f(t) (1)
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where f(t) is usually a sinusoidal periodic force of the form
f(t) = Asin¢gt and f(x) is a quadratic nonlinearity of the
form k- (22 — 1). Evidently, the location of the equilibrium
points of this system are time varying in space.
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Figure 1: Double-scroll from a binary pulse-excited Van
der Pol equation.

Now consider using a periodic binary pulse exciting force
of the form f(t) = Asgn(sin¢t). In this case, the system
has two fixed time-invariant equilibrium points located at
(z0,90) = (£A,0). These two points are clearly visible in
the upper subplot of Fig.1 which is obtained from nu-
merical simulations of (1) with A = 0.5,k = 0.25 and
¢ = 0.7. It is also possible to maintain similar behavior
by using a binary switching-type nonlinearity of the form
f(z) = k-sgn(z), instead of the quadratic one, as shown
in the lower subplot of Fig.1 with A = 1,k = 0.05 and
¢ = 0.65. Equation (1) in this case may be re-written in
the canonical form

singt > 0
sin ¢t < 0

(3)



The two equilibrium points are still located at (xo,y0) =
(b,0) = (£A,0). Note that the core engine driving oscil-
lations in this system is a quadrature sinusoidal oscillator
with oscillation condition a = 0 and oscillation frequency
wg = 1. The role of the external excitation is only to force
the system to alternate between the two equilibrium points
with alternation frequency ¢ without affecting the state
transition matrix.

Instead of using a binary pulse, which is a two-level-
logic source, we may use a three-level-logic source ob-
tained by combining the outputs of two binary sources
with different frequencies. In particular, the signal
f(t) = 3[sgn(sin ¢,t)+sgn(sin ¢yt)] has three possible val-
ues namely 0,+1 and —1. Using this f(¢) in the above
system with ¢; = 0.65, ¢, = 0.63 and k£ = 0.03, a three-
scroll chaotic attractor is observed, as shown in Fig.2(a).
A four-scroll can be generated using f(t) = 4 [sgn(sin ¢ t)+
2-sgn(sin ¢ot)], as shown in Fig. 2(b) for the same values of
¢, and ¢,. This signal has four possible levels; +0.5 and
+1.5. Note that in Fig. 2(b) we have plotted z versus y and
y for clarity.
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Figure 2: 3-scroll and 4-scroll attractors from the forced
Van der Pol equation using a dual-composite excitation
with frequency separation A¢ = 0.02.
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In Fig.3: 5,6,7 and 8-scroll attractors are generated re-
spectively using the excitation f(t) = Z[A;sgn(sin ¢t) +
Aosgn(sin gpt) + Assgn(sinpqt)] with the same ¢,
and ¢, and with ¢3 = 0.61. The signal ampli-
tudes (Aj, Ag, As) are respectively (1,1,2), (1,2,2),
(1,2,3) and (1,2,4) and the corresponding logic levels
are (0,+1, £2), (£2.5,4+1.5,4£0.5), (0,+3,+2,£1) and
(£3.5,4+2.5,4+1.5,40.5).

It is clear that the proposed technique relies on a com-
posite exciting source formed of two or more periodic
pulse signals essentially with different oscillation frequen-
cies. Hence, the generation of n-scrolls may be transformed
from a static DC problem into an amplitude and frequency-
shift problem. Note in the above example that we have an
inter-source frequency separation A¢ = 0.2. If the compos-
ite exciting source f(t) is formed of m periodic pulse-trains
then the maximum number of scrolls which can be gener-
ated is 2.

Recalling (2), it is clear that we may also generate n-
scroll-grid attractors by modifying the displacement vec-

tor to be < ba

by
(3). Figure 4 shows a 2x2 scroll-grid obtained with b, =
Agsgn(sing,t) and b, = Aysgn(sin ¢, t); (Az, Ay, ¢, ) =
(1,1,0.63,0.65). Three special cases may occur: (i) ¢, = 0,
¢, # 0 (ii) ¢, =0, ¢, # 0 (iii) ¢, = ¢,, # 0. The first case
will give rise to the horizontally-inclined double-scroll of
Fig. 1 while the second case will give rise to the vertically-
inclined double-scroll shown in Fig. 5. The third case gives
rise to a double-scroll inclined by 45°, as shown also in
Fig. 5. The general case where ¢, # ¢, results in the scroll-
grid of Fig.4. In general, for ¢, > ¢, the grid tends to
rotate as a whole in the clockwise direction; the opposite
occurs for ¢, > ¢,.

where b, and b, are defined as in
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Figure 3: Generation of 5,6,7 and 8-scroll attractors using
a triple composite exciting signal wih frequency
separation A¢ = 0.02.



Figure 4: 2x2-scroll-grid attractor.

III. THE NONAUTONOMOUS-AUTONOMOUS
TRANSFORMATION

It is well known that to generate sinusoidal oscillations,
at least a second-order system is needed. The simplest such
system is given by

P4 ¢?2=0 (4)

which yields z(t) = sin(¢t). Using this sinusoidal wave-
form as an input to a two-level-logic comparator, a peri-
odic source of the form f(t) = Asgn(sin ¢t) = Asgn(z) can
be obtained. Hence, it is clear that if we consider the ex-
citing source of an order n nonautonomous system as part
of the system, it can be transformed into an autonomous
system of order n + 2 using (4). The above forced Van der
Pol system is thus essentially of order four where in (3)
b = Asgn(z).
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Figure 5:. Vertically-inclined and 45°—inclined
double-scrolls in the two special cases (¢,,, ¢,) = (0.65,0)
and (0.65,0.65) respectively.

IV. MULTI-LEVEL EXCITATION OF AN ACTIVE TANK
RESONATOR

A second example is given in this section based on the
nonautonomous pulse-excited active tank resonator intro-
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duced in [10] and modelled by

i = af[-y— (B+7y)z+vysgn(z) + Bf(t)]
ay = x4y

a, B and « are circuit-related parameters [10]. Here, we
consider f(t) as a composite excitation given by

£(8) = -3 Assen(sin(5,)) ©

In [10], the special case i = 1 was studied and the four
equilibrium points in this case were found to be (zg,yo) =
7:’;_/61 (1,—1). The special case 3 = v implies that two of
these equilibria coincide with the origin (0,0). The eigen-
values at all points are identical since f(¢) only changes
the position of the equilibrium point but does not affect
the state transition matrix. Here, we demonstrate the
two cases ¢ = 2 and i = 3 fixing « = 50,m = 3 and
B =~ = 1. Figures 6(a)-6(d) show the generated 2,3,4 and
5 multi-chaotic attractors. The corresponding (¢3, ¢3, ¢3)
are respectively: (0.1,0.2,0) for Figs.6(a) and 6(b) and
(0.1,0.15,0.2) for Figs.6(c) and 6(d). Note that we give
the values of d)? since (4) was used to implement each el-
ement of f(t). The amplitudes (A1, A2, A3) were taken as
(1,1,0), (1,2,0), (1,1,2) and (1,2,3) respectively for the four
figures. Of course, if 3 # < the number of attractors can
be increased further, as shown in Fig. 6(e) where 6 attrac-
tors are observed. Here, (A1, A2, As) = (1,2,3), 3 =1 and
~v = 1.5. Seven attractors can also be observed with Az =4
instead of A3 = 3.

V. EXPERIMENTAL VERIFICATION

Figure 7(a) shows an experimental setup to verify the
multi-attractors in a pulse-excited tank resonator. Two
pulse exciting sources with amplitudes (Vp1,Vp2) and fre-
quencies (fp1, fp2) are shown. This corresponds to i = 2
in (6). Extra exciting sources can be added in parallel for
i > 2. The passive components were fixed as L = 40mH,
C = 47pF and r = RF = Rpl = Rpg = 2.2k0.

Figure 7(b) shows a 2-attractor observed when Vp; =
Vpo = 1.5V while the source frequencies are fp; = 120kH z
and fpo = 166k H z. These values correspond to A1 = Ay =
0.5, d)% = 0.1 and d)g = 0.2. A 3-attractor is shown in
Fig. 7(c) when Vp; = 1V, Vpy = 1.9V, fp; = 90kHz and
fp2 = 140k H z. By adding one more source with frequency
fps = 166k H z, five and six attractors can be obtained, as
shown in Figs. 7(d) and 7(e) respectively.

VI. CONCLUSION

We have described a nonautonomous technique to gen-
erate multi-chaotic attractors. Of course, it is possible to
combine this technique with the traditional static multiple
break-point technique to give a larger number of equilibria.
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Figure 6: 2,3,4,5 and 6 attractors from a pulse excited
active resonator.

Figure 7: (a) Compositely excited resonator; (b)-(e) 2,3,5
and 6 attractors (Xaxis: 0.5V /div, Yaxis: 0.75V /div).

(2]

(3]

(4]

[10]

500

REFERENCES

J. Suykens and J. Vandewalle, “Generation of n-double scrolls
(n=1,2,3...),” IEEE Trans. Circuits & Syst,-I, vol. 40, pp. 861-
867, 1993.

J. Suykens, A. Huang and L. Chua “A family of n-scroll attrac-
tors from a generalized Chua’s circuit,” Int. J. Electron. Com-
mun., vol. 51, pp. 131-138, 1997.

M. Yalcin, J. Suykens, J. Vandewalle and S. Ozoguz, “Families
of scroll grid attractors,” Int. J. Bifurcation Chaos., vol. 12, pp.
23-41, 2002.

S. Ozoguz, A. S. Elwakil and K. N. Salama, “n-scroll chaos gen-
erator using a nonlinear transconductor” Electronics Letters.,
vol. 38, pp. 685-686, 2002.

J. Lii, G. Chen, X. Yu and H. Leung “Design and analysis of
multi-scroll chaotic attractors from saturated function serics,”
IEEE Trans. Circuits & Syst,-I, vol. 51, pp. 2476-2490, 2004.
A. S. Elwakil and M. P. Kennedy, “Construction of classes of
circuit-independent chaotic oscillators using passive-only nonlin-
car devices,” IEEE Trans. Circuits & Syst.-1, vol. 48, pp. 289-307,
2001.

A. S. Elwakil and M. P. Kennedy, “Generic RC realizations of
Chua’s circuit,” Int. J. Bifurcation & Chaos, vol. 10, pp. 1981-
1985, 2000.

A. S. Elwakil, “Nonautonomous pulsc-driven chaotic oscillator
based on Chua’s circuit,” Microelectronics J. vol. 33 pp. 479-
486, 2002.

S. Ozoguz and A. S. Elwakil, “On the realization of circuit-
independent nonautonomous pulse-cxcited chaotic oscillator cir-
cuits,” IEEE Trans. Circuits & Syst.-II, vol. 51, pp. 552-556,
2004.

A. S. Elwakil and S. Ozoguz, “Chaos in a pulse-excited resonator
with sclf feedback,” Electronics Letters, vol. 39, pp. 831-833,
2003.



