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Abstract—In this paper, the harmonic balance analysis
of Generalized Chua’s circuit exhibiting n-scroll attractors
has been accomplished using the dual-input describing
functions of the piecewise linear characteristics of the
Chua’s diode.

1. Introduction

The Chua’s circuit is one of the systems for which chaos
has been verified analytically [1]. Despite its minimal
structure, it has a rich diversity of behaviors ranging
from equilibrium states to period doubling bifurcations,
from quasi-periodicity to intermittency which makes
it a milestone in nonlinear research [5]. The rich
diversity of dynamical behavior of the circuit given by is
experimentally verified [4].

It had been proposed that the double scroll behavior
characteristic to the circuit is due to the interacting limit
cycles and unstable equilibrium[3]. The existence of
interacting predicted limit cycles and unstable equilibrium
can be verified using heuristic harmonic balance method.
In this method, the circuit is represented in the Luré form
first. Then, the output of the linear part is approximated
with a limit cycle, and the amplitude and the bias of
the nonlinearity are approximated using the the describing
functions [2]. The existence of the predicted limit
cycles interacting with the equilibrium for the basic form
of the circuit with two break points had been verified
previously [7, 12].

The Chua’s circuit can be generalized in the sense that
the number and the position of the scrolls are altered
without increasing the dimensionality of the system by
modification of the nonlinearity of the circuit [8–11, 13,
14].

In this paper, the harmonic balance analysis of the
Generalized Chua’s circuit exhibiting n-scroll attractors has
been accomplished, by extending the study in [12].
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Figure 1: The Chua’s Circuit

2. The Generalized Chua’s Circuit

The Chua’s circuit depicted in Fig. 1 has the following
state space representation

ẋ = A · x + b · φ(y)

y = C · x
(1)

where

φ(y) = miy+ ki , Si < y ≤ Si+1, S0 = 0

k0 = 0, ki =

i
∑

j=1

(mj−1 −mj)S j i = ±1,±2, · · ·
(2)
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(3)
whereα, β and δ can be defined in terms of the circuit
parameters.

The double scroll, the strange attractor of the Chua’s
circuit, can be obtained for some specific range of
parameters and with two break-points piecewise linear
resistor in the circuit. The n-scroll (n=1,2,...) attractor
family was obtained as a result of generalization of the
Chua’s circuit with additional break points in the nonlinear
characteristic of the Chua’s diode [8]. Due to the
generalization of the nonlinear characteristics, it has been
shown that increasing the number of scrolls in all state
variable directions is also possible [11].
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3. Harmonic Balance Analysis

In order to analyze the circuit by harmonic balance
method the equations are first written in the classical Lur’e
form. The nonlinear part of the Lur’e form of Chua’s circuit
is as in (2) and the linear part can be represented as,

L(s) =
−α(s2 + s+ β)

s3 + (1+ α(1+ δ))s2 + (β + αδ)s+ αβ(1+ δ)
(4)

Assume that the output of the system (1) is

y(t) = A+ Bsin(ωt) (5)

then the corresponding nonlinearity output is approxima-
tely given by

φ(y(t)) ≈ N0(A, B)A+ N1(A, B)Bsin(ωt) (6)

where the approximating gain to the bias input is

N0(A, B) =
1
π

∞
∫

−∞

φ(A+ Bsin(ωt))dt, (7)

and the approximating gain to the sinusoidal input is

N1(A, B) =
1
2π

∞
∫

−∞

φ(A+ Bsin(ωt)) sin(ωt)dt. (8)

If φ : R→ R is memoryless, time invariant and odd with
respect to its argument, then bothdual input describing
functions(DIDF), N0 : R2 → R and N1 : R2 → R are
independent ofω.

The approximation given in (6) valid if

|L( jω)| ≫ |L( jkω)| , k = 2,3, · · · , j2 = −1 (9)

hence the higher order harmonics generated by the
nonlinearity can be neglected.

In order to have a limit cycle in the form of (5), the
following equations must be satisfied

1+ N0(A, B)L(0) = 0 (10a)

1+ N1(A, B)L( jω) = 0 (10b)

To predict the limit cycles in all possible regions
determined by the breakpoints, biasA, and the amplitudeB
of the of the limits cycles have been considered. To locate

all possible limit cycles the solutions of
n
∑

p=1

(

n
p

)

nonlinear

equations in the form

1+ N(p,r)
0 (A, B)L(0)) = 0 (11a)

1+ N(p,r)
1 (A, B)L( jω) = 0 (11b)

whereN(p,r)
0 ,N(p,r)

1 are the gains of the nonlinearity which
contains p breakpoints (p = 1,2, · · · ,n) including
{Sr+i |i = 0,1, · · · , p− 1} for r = 1,2, · · · ,n− p+ 1.

For the nonlinearity includingp breakpoints in the re-
gionSr−1 < y(t) < Sr+p, r = 1,2, · · · ,n− p+ 1, the DIDFs
have been obtained by using a symbolic solver for the
generalized Chua’s diode as,

N(p,r)
0 (A, B) =

1
2A

[

(mp+r +mr )A+ kp+r + kr

]

+
1

Aπ

p
∑

i=1

{

[(mr+i −mr+i−1)A+ (kr+i − kr+i−1)]

× sin−1
(A− Sr+i

B

)

+ (mr+i −mr+i−1)
√

B2 − (A− Sr+i)2
}

(12)

N(p,r)
1 (A, B) =

1
2

(mp+r +mr )

+
1
π

p
∑

i=1

{

(mr+i −mr+i−1) sin−1
(A− Sr+i

B

)

+
(mr+i −mr+i−1)(A+ Sr+i) + 2(kr+i − kr+i−1)

B2

×
√

B2 − (A− Sr+i)2
}

(13)

To interpret the bifurcation phenomena, the stability of
the located limit cycles has to be considered. Assuming
that the bias is constant for small perturbations, the stability
of the Predicted Limit Cycles (PLC) can be studied via
Loeb criteria [2, 6]. The relative location of the− 1

N1(A0,B)
locus with respect to the amplitudeB and the L( jω)
locus with respect to frequencyω provides the stability
information of a limit cycle, and a sustained oscillation or
a limit cycle occurs when− 1

N1(A0,B) locus andL( jω) locus

intersect. If− 1
N1(A0,B) is enclosed by theL( jω) locus, then

the system is unstable and the output amplitude subjected
to any disturbance will increase, on the other hand if it is
not enclosed the system is stable, then the output amplitude
will decrease. Hence, by examining the locus in the range
|A− A0| ≤ ∆A for the bias, the stability of predicted limit
cycle can be concluded, whereA0 and B0 are bias and
amplitude of the PLC, respectively.

The instability of the PLC can also be verified
analytically following the same line of reasoning in [2],
which is stated for single sinusoidal input describing
functions. The Eq. (10) can be represented as

U0(A, B) = 0 (14a)

U1(A, B, ω) + jV1(A, B, ω) = 0 (14b)

Consider a small simultaneous perturbation in amplitude,
bias and the frequency as

A→ A+ ∆A

B→ B+ ∆B

ω→ ω + ∆ω + j∆σ
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where∆σ , −
dB
dt

B . And the perturbed solution should still
satisfy Eq. (10). Hence,

U0(A+ ∆, B+ ∆B) = 0 (15a)

U1(A+ ∆A, B+ ∆B, ω + ∆ω + j∆σ) = 0 (15b)

V1(A+ ∆A, B+ ∆B, ω + ∆ω + j∆σ) = 0. (15c)

Taylor series expansion of Eq. (14), around the point
(A, B, ω) rearranging and ignoring higher order terms yield
to the first order,

∂U0

∂A
∆A+

∂U0

∂B
∆B = 0 (16a)

∂U1

∂ω
∆ω −

∂V1

∂ω
∆σ +

∂U1

∂B
∆B+

∂U1

∂A
∆A

+ j(
∂V1

∂ω
∆ω +

∂U1

∂ω
∆σ +

∂V1

∂B
∆B+

∂V1

∂A
∆A) = 0.

(16b)

Eliminating∆ω in the real and imaginary parts of Eq.(16b)
using the Eq.(16a) gives,

(

∂U1

∂ω

)2

+

(

∂V1

∂ω

)2

=
∆B
∆σ















∂U0
∂B
∂U0
∂A

(

∂U1

∂ω

∂V1

∂A
−
∂V1

∂ω

∂U1

∂A

)

−

(

∂U1

∂ω

∂V1

∂B
−
∂V1

∂ω

∂U1

∂B

)}

.

(17)

In order that the PLC to be stable, the increment∆B and
∆σ must have the same sign, i.e.∆σ/∆B > 0. Since the
left hand side of Eq.(17) is always positive, it is necessary
that,

∂U0
∂B
∂U0
∂A

(

∂U1

∂ω

∂V1

∂A
−
∂V1

∂ω

∂U1

∂A

)

−

(

∂U1

∂ω

∂V1

∂B
−
∂V1

∂ω

∂U1

∂B

)
∣

∣

∣

∣

∣

∣

A=A0
B=B0
ω=ω0

> 0
(18)

for the predicted limit cycle to be stable, whereA0, B0

and ω0 are bias, amplitude and frequency of the PLC,
respectively.

The PLC (5) is said to beinteractingwith a equilibrium
point y(t) = E, if,

B ≥ η |A− E| (19)

with η ≈ 1 [3].
For the n-scroll case, one expects to findn PLCs

interacting with one or more unstable equilibrium points,
loosing their stabilities as the level of interaction increases
(i.e. the distance between the equilibrium points and the
PLCs decreases).

4. Computational Results

Since the nonlinearity is symmetric about the origin,
examining the system fory > 0 will be sufficient. As an

example, forα = 9, β = 14.286 and,

φ(y) =







































−0.143y, 0 < |y| ≤ 1

0.286y− 0.429 sign(y), 1 < |y| ≤ 2.15

−0.571y+ 0.414 sign(y), 2.15< |y| ≤ 3.60

0.286y− 1.671 sign(y), 3.60< |y|

have been chosen.
For the rangeδ ∈ (−1.000,−0.857), the circuit either

exhibits limit cycles, single, double or 2-double scroll
strange attractors. The computations indicate that there are
several solutions satisfying the system of equations (11) for
various regions. However, only the solutions for (p, r) =
(1,1) and (p, r) = (3,1) are interacting with the unstable
equilibrium point at the origin after a critical value ofδ.
These limit cycles cause the double scroll and the 2-double
scroll behavior. The results for various values ofδ, the
solutions for these predicted limit cycles are summarized
in Table 1 and 2.

The stability of predicted limit cycles is first examined
using inequality (15). If the inequality (15) is true, the Loeb
criteria is examined to determine the stability for a range
of bias values centered aroundA0. For δ = −0.890, both
PLCs are far away from the origin and only (p, r) = (1,1)
is stable. Increasingδ until −0.920 the situation does
not change. The limit cycles loose their stability after
δ = −0.925. In simulations, it is observed that there exists
a period-2 limit cycle atδ = −0.925, and period-4 limit
cycle, single scroll, double scroll and 2-double scroll with
decreasing values ofδ.

The level of interaction can be determined using the
distance between the projection of the predicted limit cycle
on the y − axis and unstable equilibrium point at the
origin, i.e. d = |A0 − |B0||. When the biasA0 and the
amplitudeB0 values are examined, for decreasing values of
δ, an increasing interaction with the unstable equilibrium
point origin is observed. The limit cycle indicated by
(p, r) = (3,1) is already in interaction with the origin
aroundδ = −0.962, and (p, r) = (1,1) limit cycle interacts
with the origin aroundδ = 1 (Fig. 2). This verifies that
the 2-double scroll behavior is due to the interaction of four
limit cycles with unstable equilibrium point.
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0.2

0.4
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0.8

1

δ

d = |A0 − |B0||

(3,1)
(1,1)

Figure 2: The level of interaction as the bifurcation
parameterδ is varied.

495



Table 1: BiasA0, amplitudeB0, frequencyω0 of the PLC and the stability of the PLC for the regions (p, r) = (1,1)
Stability

δ ±A0 B0 ω0 η of the PLC Simulation

-0.920 0.83814 0.62051 2.45069 0.78237 stable period-1 cycle
-0.940 0.86505 0.72618 2.45069 0.86115 unstable period-2 cycle
-0.945 0.87433 0.75136 2.45069 0.87703 unstable period-4 cycle
-0.950 0.88454 0.77627 2.45069 0.89173 unstable period-n cycle
-0.975 0.94892 0.90011 2.45069 0.95119 unstable single-scroll
-0.995 1.01652 1.00274 2.45069 0.98622 unstable double-scroll
-1.000 1.03580 1.02943 2.45069 0.99363 unstable 2 double-scroll

Table 2: BiasA0, amplitudeB0, frequencyω0 of the PLC and the stability of the PLC for the regions (p, r) = (3,1)
Stability

δ ±A0 B0 ω0 η of the PLC Simulation

-0.920 4.39377 -3.64057 2.45069 0.24680 unstable period-1 cycle
-0.940 4.37371 -3.84064 2.45069 0.46693 unstable period-2 cycle
-0.945 4.34887 -3.89809 2.45069 0.54922 unstable period-4 cycle
-0.950 4.31201 -3.96034 2.45069 0.64833 unstable period-n cycle
-0.962 4.15296 -4.14314 2.45069 0.99019 unstable single scroll

5. Conclusions

In this paper, it has been shown that, it is possible to
predict chaos in the generalized Chua’s circuit exhibiting
n−scroll attractors by harmonic balance analysis. To
predict the interacting limit cycles, the dual input
describing functions forn−break point nonlinearity has
been derived. The stability of predicted limit cycles have
been examined graphically and also an analytical necessary
condition for the stability of the predicted limit cycles has
been given. The interaction of the unstable equilibria with
n− unstable predicted limit cycles is a strong indication of
n-scroll chaos. The level of interaction has been measured
using the distance between the interacting limit cycles and
the equilibria. The usual period doubling route to chaos has
been characterized by the increasing level of interaction.
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