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Abstract—In this paper we consider the performance
of filtering algorithms, which means algorithms to retrieve
the underlying state of a nonlinear system in a causal way.
Since for nonlinear systems the optimal filter is compu-
tationally prohibitively expensive in general, one faces a
trade–off between desired filtering accuracy and computa-
tional complexity. In order to ascertain whether a certain
more powerful filtering algorithm is worth the computa-
tional effort, it is neccessary to carefully evaluate the poten-
tial benefits. We show that skill scores are a useful concept
for this. We compare the performance of a number of fil-
tering algorithms applied to a simple nonlinear system. We
also discuss the perfomance in relation to the required com-
putational resources. In general, higher accuracy requires
more cpu-power.

1. Introduction

Nonlinear filtering is the problem of recovering the state
of a (perhaps only partially known) nonlinear system from
noisy observations in a causal manner, that is by not al-
lowing future observations to enter the current state esti-
mation. For linear systems with Gaussian uncertainties the
problem is completely solved by the famous Kalman fil-
ter [8]. Although there exists a general optimal filter the-
ory [7, 5], both theoretical analysis and practical applica-
tion meet with the fundamental problem that optimal filters
for nonlinear systems possess an infinite complexity, in a
sense that can be made rigorous [9]. Consequently, appli-
cations rely on (suboptimal) approximations to the optimal
filter. The theoretical understanding of such approxima-
tions is still unsatisfactory though, and comparable studies
of different algorithms are lacking. A fair comparison of
nonlinear filtering algorithms needs to take the probabilis-
tic character of the problem into account. Furthermore, fil-
ter performance should be seen in relation to the compu-
tational burden of the implementation. Since the optimal
filter has an infinite complexity, however well a given filter
scheme might perform, an even better algorithm, although
requiring more computer resources, still exists. This paper
aims at providing a framework for comparable studies of
filtering algorithms. As an example, we present a compar-
ison of five filtering algorithms applied to a partially ob-
served chaotic system.

The dynamical systems considered in this work are iter-
ated nonlinear maps of the following form:

Xn+1 = f (Xn), (1)

where f (·) is a diffeomorphism of R
d.

In applications the underlying dynamics of a measured
time series are often are modeled by processes like (1). The
problem is to estimate the unknown state Xn using noisy
measurements. In this work we assume measurements of
the form

Yn = GXn + σ·Wn, (2)

where Wn are independend normal random variables with
zero mean and unit variance. G is a linear mapping. We as-
sume Yn to be one dimensional. Let Yn := {Y1, . . . , Yn}.
Then a rigorous approach to estimate Xn from Yn is to
consider the conditional probability P(Xn|Y

n) or the corre-
sponding probability density function henceforth denoted
by πn(x) (the dependency on Yn is ommited in this no-
tation). It turns out [5] that this pdf satisfies the iterative
equation

πn+1(x) = c·q(Yn+1, x)·L∗πn(x). (3)

Here L∗ denotes the Frobenius–Peron operator which can
be calculated from the equation (1) and turns out to be

L∗p(x) = det(
∂ f −1(x)
∂x

)−1 p( f −1(x)). (4)

The density q(Yn+1, x) is given by

q(y, x) = pYn |Xn=x(y)
= N(y,G(x), σ2),

whereN is a gaussian pdf.
In order for Equation (3) to be useful in a practical ap-

plication, it is of course necessary to represent πn(x) by a
suitable finite dimensional parametrisation. If the dynam-
ics are linear and the errors are gaussian, the Kalman fil-
ter provides such a parametrisation. As already mentioned
though, if f is nonlinear, the filtering process πn(x) does
not admit a finite dimensional parametrisation. Therefore,
approximations are essential for applications. The approx-
imative filter has to be, of course, finite dimensional and
as optimal as possible. A large variety of approximation
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methods have been conceived. All those methods face a
tradeoff between computational complexity and accuracy.
Although we will present some approximations in the fol-
lowing section, the purpose of this paper is not to provide
a comprehensive study of filtering algorithms, but rather to
present a framework to compare those methods in a fair and
meaningful way, thus studying the tradeoff between com-
putational complexity and accuracy.

2. Filtering Algorithms

In this section we briefly consider schemes to approx-
imate the filtering process πn. The approximative filter-
ing process will be denoted by π̃n. Probably the first
widely applied nonlinear filtering algorithm was the Ex-
tended Kalman Filter. It consists essentially of the usual
Kalman Filter Equations applied to the linearized nonlin-
ear dynamics. We refer the reader to [5] for a thorough
explanation of the technique and proceed to explain further
techniques used in this paper.

2.1. Gaussian density filter

A simple method to obtain approximate solutions of
Equation (3) is simply to assume that πn(x) is gaussian,
even though it is not. After applying the operator L∗,
the density is generally nongaussian, but we can turn it
into a gaussian again by retaining only the predicted mean
and variance. Having done this, we have to multiply by
q(Yn+1, x) in Equation (3), but this is just multiplication of
two gaussians, resulting in a gaussian π̃n+1(x), which we
take as an approximation to πn+1(x). If f is polynomial,
this filter can be formulated explicity in terms of dynam-
ical equations for the mean and the variance, which gives
a very fast algorithm. If the underlying system has N di-
mensions, the filter has N + N(N+1)

2 dimensions and is im-
plemented straightforwardly. This method can be extended
using more complicated densities. For a general overview
see [2].

2.2. Monte Carlo Method

The Monte Carlo Method discussed here is also known
as particle filter and has been investigated in [3]. The idea
is to generate M independent copies {X(k)

n }n≤0,k=1...M of (1),
where n is, as before, the time and k denotes the k’th mem-
ber of the ensemble. The method provides an approxima-
tion to πn(x) by a weighted average over δ–functions cen-
tered at the ensemble points as

πn(x) �
M
∑

k=1

w(k)
n ·δ(x − X(k)

n ).

To give an expression for w(k)
n , define the quantities

g(k)
j := q(Y j, X

(k)
j ) for all j ≤ 0, k = 1, . . . ,M.

Theoretically one might guess that

w(k)
n = c·

n
∏

j=1

g(k)
j ,

where c is a constant chosen to yield
∑

k

w(k)
n = 1

is a reasonable choice. A profound analysis of the prob-
lem however shows that this method tends to diverge, and
one should rather implement a limited memory version of
the filter, where the memory depends on the ensemble size
M. This is done as follows: Let qM be a certain positive
integer depending on the ensemble size M. Then define the
weights to be

w(k)
n = c·

n
∏

j=n−qM

g(k)
j ,

where we define g(k)
j := 1 if j is negative or zero. If qM is

set to qM = integer closest to 2
√

log(M), it can be shown
that the Monte Carlo Filter converges to the optimal filter
(in some sense) for M → ∞. The general drawback of
Monte Carlo Methods is the required computer power. It
is necessary to store the ensemble points and the associ-
ated weight vectors. Furthermore, the dynamical equations
(e.g. iterated maps or stochastic differential equations) have
to be solved for all ensemble points in parallel. This obvi-
ously requires more power than the previously discussed
low dimensional filters.

3. Proper Scoring Rules

The main focus of this paper is on the fair evaluation
of filtering algorithms. The optimal filtering proces in our
setup is πn(x), so a measure of the quality of a filtering pro-
cess π̃n could be some sort of distance between πn(x) and
π̃n(x). Although in general πn(x) is not available, the con-
cept of Skill Scores provides a measure by which two ap-
proximative filtering processes can be compared in terms
of their relative distance to πn(x). A skill score is a func-
tion S (p, x), where p is a probability density and x is a real
number. By means of a skill score we can compute the skill

S(p, q) =
∫

S (p, x)q(x)dx

of p with respect to q. We now consider some examples.
The common Mean Square Error is the skill defined via the
score

S (p, x) = (x −
∫

zp(z)dz)2.

This score measures the quality of the mean of p(x) as an
estimator for x. As is obvious from the definition, the Mean
Square Error depends on p(x) only through its first moment
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and hence cannot be expected to value all aspects of p prop-
erly.

The Ignorance Score is defined by

S (p, x) = − log(p(x))

The Ignorance Score is related to the log–likelihood [10]
and plays an importand role in gambling theory. Another
interesting score (although not used in this paper) is the
Proper Linear Score. It is defined as

S (p, x) =
∫

p2(z)dz − p(x).

It should be noted that the Proper Linear Score depends on
the functional form of p while the Ignorance depends on
p only via the single number p(x). This property is called
locality. We note that in this paper skill scores are defined
like cost functions: small numerical values indicate better
skill. Especially we want the score to be minimal if p and
q coincide. This property is called propriety. Mathemat-
ically, a skill score is proper if for any two densities p(x)
and q(x)

S(q, p) ≥ S(p, p).

In other words, the minimum of the left hand side over q(x)
is obtained for q = p. A skill score is strictly proper if that
happens only if q = p.

Propriety is a property only of the score itself. The Ig-
norance and the Proper Linear Score are proper. A gen-
eral result due to Bernardo (see [1]) states that all smooth,
proper and local scores are affine functions of the Igno-
rance. Proper scores in general have been characterized by
Raftery & Gneiting [4].

The Mean Square Error is proper, but not strictly proper.
In fact, it is easy to see that

∫

(x − m)2q(x)dx is minimal
if m =

∫

x q(x)dx (proving that the Mean Square Error is
proper), yet any other density p(x) having the correct first
moment m will achieve the same skill.

In filtering we are concerned not only with a single pdf p
but with a sequence π̃n(x) of pdfs. If we have corresponding
true states Xn available, we can estimate the mean skill of
the filter (with respect to a proper skill score S ). To this
end, define the empirical skill

S (π̃)N :=
1
N

N
∑

n=1

S (π̃n, Xn)

We assume this to converge to the mean skill

S (π̃)N → E [S (π̃n, Xn)] .

The mean skill can be written as

E [S (π̃n, Xn)] = E
[∫

S (π̃n, x)πn(x)dx
]

.

To see this, condition on Yn under the expectation. If the
skill score is strictly proper, this expression is minimal if

and only if π̃n = πn for every n. In other words, the
conditional probability πn minimizes the mean skill. For
improper skill scores though, a filtering process different
from the optimal one could achieve a better skill, which es-
sentially means that the filter we think is right would not
achieve the best score.

4. Numerical Examples

To demonstrate our methodology, we applied the afore-
mentioned approximative filtering algorithms to the well
known Hénon system definded as

f (x) = [1 − 1.4x2
1 + 0.3x2, x1].

As measurement variable we used y = x1 + x2 +σ ·Wn. We
compared the Extended Kalman Filter (EKF), the Gaussian
Density Filter (GDF), a Monte Carlo Filter using an ensem-
ble of 1024 points (MCF1024), Monte Carlo Filter using an
ensemble of 2048 points (MCF2048) and an Indistinguish-
able States Filter (ISF) (see [6]) that will not be described
here. Actually, the invariant measure was used as a further
“filter” for reference.

Each filter was allowed an initial training sequence of
256 points, during which certan parameter tuning was al-
lowed. Then the empirical skill was measured as a mean
over 1792 points. The skill score used was the Ignorance.
We recorded the cpu–times needed to carry out the sweep
through the data.

In Figure 1 we plotted the performance of the filtering
algorithms versus the required cpu–time. The panels show
the performance for a noise level (from top to bottom) of
15dB, 18dB and 21dB. The performance is actually mea-
sured relative to the zero–skill filter given by the invariant
measure. This filter does not need any cpu–time (it does
not take any measurements into account), so it appears fur-
thest on the left with zero skill. The other filters generally
show increase in perfomance with increasing cpu–demand,
with the ISF being the most time consuming and best per-
forming filter (except for the 15dB case). The gain in per-
formance, however, appears to settle with increasing com-
plexity. Bootstrap–bars indicate 90% isopleths. It should
be noted that except for the ISF in the 15dB case, none of
the filters could be termed better or worse that any other in
general. A better performance in general has to be paid for
by higher computational burden. Given that in higher di-
mensions ensemble filters need huge Monte Carlo ensem-
bles to sample the state space, further studies should prob-
ably also take the size of the required storage into account.
Furthermore, the requirements to store the actual pdf π̃n can
be an issue, especcially if the results is to be disseminated,
for example in weather forecasting.

5. Conclusion

In this paper we presented a framework to compare
the performance of filtering algorithms. We suggested
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that rather just the accuracy alone, the trade–off between
desired filtering accuracy and computational complexity
should be investigated. In order to ascertain whether a cer-
tain more powerful filtering algorithm is worth the com-
putational effort, it is neccessary to carefully evaluate the
potential benefits. Often filtering algorithms (as well as
prediction and other estimation schemes) have been val-
ued only in terms of the Mean Square Error which does
not comprehensively assess all features of a pdf. We sug-
gested that conceptually better measures are provided by
skill scores. To illustrate our point, we compared the per-
formance of a few algorithms applied to the henon sys-
tem with the average cpu–time they required to carry out
a single filtering step. In general, higher accuracy requires
longer time. For an overall quality assessment, subsequent
studies should take other aspects of the filtering algorithm
into account, for example the size of the required storage
or the size of the actual product.
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Figure 1: Performance of the filtering algorithms vs.
time. The symbols indicate EKF (circle), GDF (triangle),
MKF1024 (star), MKF2048 (box) and (ISF) (plus sign).
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