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Abstract—We describe a new surrogate method for in-
vestigating whether there is some kind of dynamics in ir-
regular fluctuations (short term variability), even if the data
have long term trends or periodicities. This is, in other
words, an investigation of whether irregular fluctuations are
independently distributed random variables. These cases
are theoretically incompatible with the assumption required
to apply previously proposed surrogate methods. We apply
the method to a variety of known test systems and actual
time series with unknown dynamics.

1. Introduction

The surrogate analyses have long been focused on ir-
regular fluctuations (short term variability) and pseudo-
periodic time series [2, 4, 7, 5, 6]. However, they are not
only the behaviours we can see in the real world. Some data
have irregular fluctuations and some trends (periodicities).
See Fig. 1 (a) and (b), which we will examine later. These
are more complicated than time series intended by these
method, and the methods are theoretically inconclusive. In
this paper, to investigate whether there is some kind of dy-
namics in irregular fluctuations irrespective of whether the
data are with or without trends, we introduce a method,
the small-shuffle surrogate (SSS) method [1] and apply the
method to two actual data,

2. The Small-Shuffle Surrogate Method

The basic premise of the proposed technique is that if ir-
regular fluctuations are not random, then there is some kind
of underlying dynamical system: whatever trending is con-
taminating the data. In such a case, the data index (order) it-
self has important implications irrespective of whether time
series are linear or nonlinear. Hence, whenever the index
changes, the flow of information also changes and the re-
sultant time series no longer reflects the original dynam-
ics. We focus our attention on this point and propose a
new surrogate method using this idea. The purpose of our
method is to distinguish between irregular fluctuations with
or without dynamics.

To investigate irregular fluctuations (especially when
they are with long term trends), we want to de-
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Figure 1: Two series examined in this paper. Both the data
have irregular fluctuations and seemingly trends. (a) daily
highest temperature in Tokyo from 1 January 1998 to 31
March 2005. The time series should have at least one long
term periodicity, one year (365 days) periodicity. (b) wind
data. The data was measured using an anemometer with 50
Hz located at 1 m above the ground in Institute of Industrial
Science, The University of Tokyo in Komaba, Tokyo, from
13:08 JST on 25 October 2004 (Mon) for about 1 hour. We
use the part of wind data, which corresponds to about 11
minutes.

stroy local structures or correlations in irregular fluctua-
tions (short term variability) and preserve the global be-
haviours (trends). To generate such surrogate data, we
shuffle the data index on a “small” scale: this is in contrast
to the random-shuffle surorgate (RSS) method where the
data index is shuffled on a “large” scale and any structure
of the original data is destroyed [2]. We generate surrogate
data as follows; Let the original data be x(t), let i(t) be the
index of x(t) (that is, i(t) = t, and so x(i(t)) = x(t)), let g(t)
be Gaussian random number and s(t) will be the surrogate
data.

(i) Obtain i′(t) = i(t) + Ag(t), where A is an amplitude
(adding Gaussian random numbers to the index of the
original data). Note that the index i(t) will be a se-
quence of integers whereas the perturbed sequences
i′(t) will not.

(ii) Sort i′(t) by the rank-order 1 and let the index of i′(t)
be î(t) (rank-order the perturbed index, thereby gen-
erating a slightly perturbed index of the original data)

1By rank-order we mean the sequence in which the values of different
relative magnitude occur. For example, the rank-order of the sequence
{π, 0, e, √2} is {4, 1, 3, 2}.
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(iii) Obtain the surrogate data s(t) = x(î(t)) (reorder the
original data with the perturbed index 2)

When the amplitude A is selected appropriately, the index
is shuffled only on a small scale, where the generated sur-
rogate data loses local structures or correlations but pre-
serve the global behaviours as much as possible. We call
the method the Small-Shuffle Surrogate (SSS) method. The
SSS data have the same probability distribution as the orig-
inal data. Hence, the null hypothesis addressed by our al-
gorithm is that irregular fluctuations (short term variabil-
ity) are independently distributed (ID) random variables (in
other words, there is no short term dynamics or determin-
ism). The major difference between the RSS and SSS
methods is that the SSS method removes the requirement
for “identically” distributed random variates.

2.1. The discriminating statistics

For surrogate test, discriminating statistics are necessary.
The SSS method changes the flow of information in the
data. Hence, we choose to use the auto-correlation func-
tion (AC) and the average mutual information (AMI) as
discriminating statistics. The AC; an estimate of the linear
correlation in data; and AMI; a general nonlinear version of
AC on a time series; can answer the question: on average
how much does one learn about the future from the past.
To know difference between the original and SSS data, we
show the full curves for the purposes of illustration, be-
cause we want to inspect the global behaviours3.

After calculation of these statistics, we need to inspect
whether a null hypothesis shall be rejected or not. We em-
ploy the Monte Carlo hypothesis testing and check whether
estimated statistics of the original data fall within or out-
side the statistics distribution of the surrogate data [3]. We
generate 39 SSS data and then the (two tailed) significance
level is 0.05.

2.2. Searching for the most appropriate value of A

The SS surrogate data are influenced primarily by the
amplitude A. If A is too small, the values are better at pre-
serving any structure and correlation in the original data,
however, they are not effective at destroying the local struc-
tures. As the result, difference between estimated statis-
tics for the original and surrogate data is not distinct even
when there is a dynamics in irregular fluctuations. On the
other hand, if A is too large, the values are better at destroy-
ing any structure and correlation of the original data, how-
ever, they are not effective at preserving the long term be-
haviours. For data with trends, large values are not appro-
priate, because the global behaviours of the original data

2The simple example is as follows; Let x(t) be (13, 12, 14, 11, 15),
where i(t) is (1, 2, 3, 4, 5). We obtain the perturbed index i′(t),
where let i′(t) be (0.1,−1.3, 3.2, 4.5, 2.7). Sorted i′(t) becomes
(−1.3, 0.1, 2.7, 3.2, 4.5) and hence î(t) is (2, 1, 5, 3, 4). Then, s(t) which
is x(î(t) (that is, x(2), x(1), x(5), x(3), x(4)) is (12, 13, 15, 14, 11).

3It is possible to consider only one value of AMI or AC at an arbitrary
time lag for all tests, for example AC or AMI at time lag=1.
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Figure 2: Relationship of the amplitude A of Gaussian ran-
dom numbers and the index. The panel (a) illustrates (as a
function of shift amplitude A): the proportion of points that
are unperturbed by the SSS algorithm (•); and, the max-
imum distance that any point in the original data is per-
turbed in the surrogate (�, expressed as a fraction of the
data length). The panel (b) illustrates the effect of differ-
ent values of A. The original data is generated by x(t) = t,
1 ≤ t ≤ 100. If the SSS and original data are identical, then
the curve should be a straight line. If the SSS data is equiv-
alent to an ordinary RSS data set, then the curve should be
IID.

are lost and the influence of contaminated trends may be
larger than that of irregular fluctuations. As the result, some
differences appear even when there is no dynamics in ir-
regular fluctuations. Hence, the smaller the value of A the
better, if the value can destroy local structures and preserve
the long term behaviours.

Figure 2 shows the relationship of the amplitude A and
the data index. Panel (a) shows that as A increases, the
number of data points which do not move decreases and the
ratio of maximum move distance increases. To show the
influence of the amplitude visually, we directly compare
the original data and the SSS data at different amplitude A.
Panel (b) shows that until A is about 2.0, the behaviour of
s(t) is almost the same as the original data (A = 0), as the
A increases, the behaviour of s(t) becomes more stochastic.
This result indicates that broadly speaking, we should use
up to A = 2.0, if we want to generate SSS data which loses
the local structures or correlations of the original data and
preserve the global structures or behaviours.

In preliminary tests 4, we find that A = 1.0 is most ap-

4We have investigated which values of A are the most appropriate
using AC and AMI and some models which are described later, where
A = 0.25, 0.5, 1.0, 2.0, 5.0 and 10.0. We find that A = 1.0 is sufficient.
When A < 1.0, AC and AMI cannot give clear difference between the
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Figure 3: A plot of the AC for Gaussian random number
with x component of the Rössler equations: (a) A = 1.0
and (b) A = 5.0, where the number of SSS data is 39. The
solid line is the original data and dotted lines are the SSS
data.

propriate and more than adequate for nearly all purposes,
in this case about 50% of the data points in the SSS data
is in the same index as the original data. Figure 3 shows
the typical results of these calculations. Although AC of
the original data fall within the distributions of SSS data in
panel (a), the base line of the SSS data strays far from that
of the original data in panel (b). Hence, we use A = 1.0
in our calculations. We note that although we expect this
value is appropriate in most cases, the value of A will de-
pend on features of the data, and smaller or larger values
may be justified in some situations.

3. Numerical Examples

We now demonstrate the application of our algorithm,
and confirm our theoretical arguments with several cases.
In each case the number of data points used is 5,000, the
data used are both noise free and contaminated by 10%
Gaussian observational noise. The first application is to
data with no trend. We use Gaussian random numbers as
data with no dynamics. To study data with dynamics, we
use the following models. The linear AR model is given by
xt = a1xt−1 + a6xt−6 + ηt, where we use a1 = 0.3, a6 = 0.2
and ηt is Gaussian dynamical noise with standard deviation
1.0. The Ikeda map is given by

f (x, y) =
(

1 + µ (x cos θ − y sin θ) , µ (x sin θ + y cos θ)
)
,

where θ = a − b/
(
1 + x2 + y2

)
with µ = 0.83, a = 0.4 and

b = 6.0. The Logistic map is given by xt = axt−1(1.0−xt−1),
where a = 4.0. In all cases, we use xt as the observational
data.

Figures 4 (a) and (b) show that when there is no dynam-
ics (that is, data are Gaussian random numbers), both AC
and AMI of the original data fall within the distributions
of the SSS data. However, in other cases, that is, when
there is dynamics, even if systems and data are contami-
nated stochastically, AC or AMI or both are distinct. Here,
we note that some differences clearly appear when the time
lag is relative small, because the information in systems is
not retained for longer periods of time. When the data is

original data and the SSS data even if there is dynamics. When A ≥ 1.0,
AC and AMI can give clear difference. However, when the irregular fluc-
tuations are with trends, A ≥ 5.0 are too large.
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Figure 4: A plot of the AC and AMI: (a) and (b) Gaussian
random number, (c) and (d) a linear AR model, (e) and (f)
the Ikeda map, and (g) and (h) the Logistic map where we
use A = 1.0 and 39 SSS data. The solid line is the original
data and dotted lines are the SSS data.

contaminated by 10% observational noise, and also when
the amplitude A is larger than 1.0, the results obtained are
essentially the same.

The second application is to data with trends, where
Rössler equations are used to generate a slow trend. The
equations are given by

ẋ = −(y + z), ẏ = x + ay, ż = b + z(x − c),

where a = 0.3909, b = 2.0, c = 4.0, when calculated us-
ing the fourth order Runge-Kutta method with sampling
interval 0.02. The equations when using these parame-
ters exhibits period 6 behaviour [5]. Data generated using
the same models as above are added to the x component
of the equations, where both the systems are independent
and the level of additional data to the data is equivalent
to 56.2% (5dB) observational noise at each case. The be-
haviour is similar to that in Fig. 1 (a).

Figure 5 shows the results for these data. Panels (a) and
(b) again show that when there is no dynamics in the irregu-
lar fluctuations, AC and AMI of the original data fall within
the distributions of SSS data, however, AC or AMI or both
are distinct when there is dynamics. In all cases, especially
when the time lag is larger, behaviours of AC and AMI of
the SSS data are very similar to that of the original data.
This indicates that the local structures are destroyed and
the global structures are preserved in the SSS data. When
the data is contaminated by 10% observational noise, the
results are essentially the same.

Figures 4 and 5 show that when irregular fluctuations are
Gaussian random numbers (that is, there is no dynamics),
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Figure 5: A plot of the AC and AMI: (a) and (b) Gaussian
random number, (c) and (d) linear AR model, (e) and (f)
Ikeda map, and (g) and (h) the Logistic map, with x com-
ponent of the Rössler equations, where we use A = 1.0 and
39 SSS data. The solid line is the original data and dotted
lines are the SSS data.

both AC and AMI of the original data fall within the dis-
tributions of the SSS data, but when there is dynamics, the
AC or AMI or both fall outside, even if systems and data
are contaminated stochastically. Therefore, applying the
SSS method can detect whether there is dynamics or not
using AC and AMI.

4. Application

Based on the result of these computational studies, we
apply the proposed method to three experimental systems:
(1) daily highest temperature in Tokyo, and (2) wind data,
which seem to have trends. See Figs. 1 (a) and (b). We
use 2,647 data points for the daily highest temperature in
Tokyo, and 32,768 data points (about 11 minutes) for the
wind data.

Figure 6 shows the SSS data and the results. Panels (a)
and (c) show that the SSS data are similar to the original
data. Panel (b) shows that AMI of the daily highest tem-
perature in Tokyo fall outside the distributions of the SSS
data. Hence, we consider that the temperature data have
some kind of dynamics behind the data. When we use the
daily lowest temperature in Tokyo, the result obtained is
essentially the same. Panel (d) shows that AMI of the wind
data fall outside the distributions of the SSS data. Hence,
we consider that the wind data have dynamics. Although
we do not show the results of AC in Fig. 6, the results are
essentially the same as those of AMI in all case.
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Figure 6: SSS data and a plot of the AMI: (a) and (b) daily
highest temperature in Tokyo, and (c) and (d) wind data
where we use A = 1.0 and 39 SSS data. The solid line is the
original data and dotted lines are the SSS data in panels (b)
and (d).
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