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Abstract

Estimating Jacobian matrices of observed data generated by a
nonlinear dynamical system is one of the important steps for
nonlinear prediction. The Jacobian matrices are estimated by
using local information about divergences of nearby trajecto-
ries. Although the basic algorithm for estimating the Jacobian
matrices generally works well, it often fails for noisy data. In
this paper, we proposed a new scheme to select a better near
neighbor set for more accurate estimation of the Jacobian ma-
trix: making a bootstrap subset of nearest neighbors. As a re-
sult, our method much improves nonlinear predictability not
only for mathematical models with observational noise but
also for real time series.

1. Introduction

Many prediction methods are proposed for predicting real
time series data, for example, seismic events, economic data
and so on. Such real time series data are often generated by
nonlinear dynamical systems. Thus, it is inevitable to involve
nonlinear prediction even though its algorithms become more
complicated.

In this paper, we adopt a local linear prediction for non-
linear dynamics by estimating Jacobian matrices[1, 2]. In
the method, it is important to consider how to select appro-
priate local information, that is, a near neighbor set. If we
observe noisy short time series, local information becomes
poor, that is, if the data are corrupted by noise and the num-
ber of near neighbors is small, the estimated Jacobian matri-
ces become unreliable, then it is almost impossible to achieve
higher predictability. To solve the issue, we apply the boot-
strap method[3] to statistically produce a wide variety of near
neighbors sets. We combine a nonlinear prediction method
using the approximated Jacobian matrices with the bootstrap
method in order to realize higher prediction accuracy than
conventional prediction methods. To confirm the validity,
first we apply our method to the Ikeda map[4]. As a result,

our method improved nonlinear predictability. Moreover, the
method is also effective in the case that the time series data is
disturbed by noises. In addition, we also apply our method to
analyze nonlinearity of a Japanese vowel /a/[5].

2. The Jacobian matrix estimation method

Let us consider a nonlinear dynamical system:	�
������������
�	�
������� (1)

where � is a � -dimensional nonlinear map, 	 ( � ) is a � -
dimensional state at time � . To estimate the Jacobian matrix
of � , we linearize the Eq.(1) as follows:� 	�
���������� !��
"	�
����� � 	#
"����� (2)

where  �� ( 	 ( � )) is the Jacobian matrix at 	 ( � ). To evaluate �� ( 	 ( � )) only with the information of 	 ( � ), first, we extract
a near neighbor set of 	 ( � ). Let us denote the $ -th nearest
neighbor by 	 ( �&% ), $ �('&�)�*�,+&�)-)-.-��,/ , where /0�1� is the
number of near neighbors. After a short temporal evolution,	 ( � ) and 	 ( � % ) evolve 	 ( �2�3� ) and 	 ( � % �4� ), respectively.
Then, we denote displacement vectors, 5�% �6	�
 �*% ��7#	�
��� and8 % �6	�
 �*% �3�9��74	�
�:�;�9� . Here, 52% corresponds to

� 	 ( � )
and 8 % corresponds to

� 	 ( �<�4� ) in Eq.(2). If the norms of5=% and 8 % and the temporal evolution are small enough, we
can describe the relation between 8 % and 52% by the following
equation: 8 % �!>?
"��� 5 % � (3)

where the matrix > ( � ) is the approximated Jacobian matrix �� ( 	 ( � )) in Eq.(2). Then, we estimate > ( � ) by using a least-
square-error fitting, which minimizes the average square error@

:

@ � �/ AB %DC �<E 8 % 7F>G
"��� 5 % EIHKJMLON -
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Then, we can calculate > ( � ) by the following equations:>P
"���RQS�!TU� (4)

where Q is a variance matrix of 5 % and T is a covariance
matrix of 52% and 8 % . If Q has its inverse matrix, we can
estimate > ( � ) by >P
���V�WTUQYX � .

Let us consider a nonlinear prediction problem of 	 ( Z ) on
an attractor from the dynamical system of Eq.(1). Our issue
is to predict its [ step future 	 ( Z � [ ). First, we search the
nearest neighbor 	 ( �&\ ) of 	 ( Z ). Then, we calculate a dis-
placement vector

5^] ��	�
 Z �=7_	�
 �I\ �`-
Next, we estimate the Jacobian matrix > ( � \ ) at 	 ( � \ ). Fi-
nally, we can estimate the predicted displacement vector a8 ] as

a8 ] ��>G
 � \ � 5=] �
where a8 ] � a	�
 Z �b�9��7#	 ( �I\ �c� ). Then, we can predicta	�
 Z ����� as follows:

a	�
 Z �d�9�e�!>?
 �f\ �`
�	�
 Z �=7_	�
 �I\ �����!	�
 �I\ ������-
Repeating above scheme for [ times, we can predict the [ step
future of 	 ( Z ).

3. Bootstrap estimates for Jacobian Matrices

In the conventional Jacobian matrix estimation method[1,
2], if the number of near neighbors of 	 ( Z ) is small, the esti-
mation of the Jacobian matrices becomes unreliable. Such
an unreliable estimate would lead to undesirable results.
To solve the issue, we introduced the bootstrap sampling
scheme[3] to make a wide variety of nearest neighbor sets
in order to obtain statistical reliability of the estimation of the
Jacobian matrices.

In our proposed method, we apply the bootstrap method
to the prediction method of the Jacobian matrices. First, we
select the nearest neighbors on 	�
 Z � by the same way as
the conventional method. The nearest neighbor on 	�
 Z � is
denoted by 	�
 � \ � , and the other neighbors are denoted by
D g �bh�	�
 � � �`��	�
 �*i ���)j.j)jk�,	�
 � A �Rl . We perform a sampling
with replacement of D g and obtain a new set of nearest neigh-
bors D m� �nh�	 m� 
 � � �`��	 m� 
 � i �`�)j)j.jk��	 m� 
 � A �Rl . Then, we esti-
mate the Jacobian matrix > m� 
 �f\ � at 	�
 �I\ � by using D m� as
introduced in Sec.2, and we predict a future point of 	�
 Z � by

a	 m� 
 Z �����o�p> m� 
 �I\ �)
"	�
 Z �=7P	�
 �f\ �����!	�
 �I\ �����`-
We repeat such bootstrap estimates for q times and ther

-th bootstrap predicted point is obtained as a	 ms 
 Z �t�9���> ms 
 � \ � ( 	�
 Z �`7#	u
 � \ �����6	�
 � \ �1�9�`
 r �v�*�,+w�.-)-.-`� q � . Then,

we calculate its mean value xa	 ms 
 Z �y����� �q
zB s C � a	 ms 
 Z �y�9�

as a final predicted point.
However, in this method, we also found that the matrix Q

in Eq.(4) dose not always have the inverse matrix, because it
is possible that the matrix Q is not full rank. In such a case,
we retry a sampling with replacement of { 
 Z � again, and
obtain another set of nearest neighbors. We repeat this sam-
pling until the rank of the matrix Q is enough to estimate the
stable Jacobian matrices and to perform a stable prediction.

4. Applying the proposed method

4.1. Simulations

We use two time series data for performing the proposed
nonlinear prediction. First, we predict the Ikeda map [4] as a
numerical model, which is described as follows:|v} 
�������V��~�� r 
 } 
"���w�`���.
"��
�����o7P�e
"���w� LDN 
"��
������� (5)��
"�������V� r 
 } 
���w� LON 
��
�����^�F��
���&�`�*��
��
��������� (6)

���F��7P�o�w
��:� } 
��� i �F��
"��� i �`�
where ~ ,

r
, � , and � are parameters. Then, we disturb

both
} 
"��� and ��
"��� by the observational noise, the strength

of which is denoted by � .
We also apply our method to the Japanese vowel /a/[5].
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Figure 1: An attractor of the Japanese vowel /a/ reconstructed
with � �p� and � �p� .
Because the vowel is a single variable time series, we trans-
form the time series in a � -dimensional state space with a
delay � by the Takens method[6] for performing nonlinear
prediction.

We introduced a measure to compare the proposed method
and conventional methods. First, we calculate the normalized
root mean square error,� ��� �p�� C � E 	u
"��� [ �27c�	�
�k� [ � E i� � �� C � E 	u
"��� [ �271�	�
�k� [ � E i

�
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where [ is a prediction step, �	�
 Z � [ � is a predicted point
and � is the number of predicted data. We denote

�
of the

conventional method and the proposed method as
�

c and
�

p,
respectively. Then, the measure for the comparison is defined
by �

r
� � c

7 �
p�

c

�
which is an improved ratio between

�
c and

�
p. The second

measure evaluates how many times the proposed method im-
proves prediction accuracies than the conventional method.
We define this ratio by �����P� '&�.�`  .
4.2. Results and Discussion

Figure 2 shows the results of the Ikeda map. In Figs.2(a),
(c), (e) and (g), the horizontal plane shows the near neighbor
size ¡ (defined by

AM¢ �
� £ �.'*'*� used for local linear predic-

tions and prediction step [ , and the vertical axis shows the
improved ratio of root mean square error

�
r. These figures

show that each
�

r is almost positive, especially in the region
of small ¡ . Thus, the prediction accuracy of the proposed
method is better than the conventional method. On the other
hand, in the region of large ¡ , the proposed method shows
almost the same result as the conventional method. The rea-
son is that the number of near neighbors used for prediction
is large enough to evaluate Jacobian matrices. In such a case,
the bootstrap method is not effective.

In Figs.2(b), (d), (f) and (h), the horizontal plane shows the
near neighbor size ¡ and delay time [ , and the vertical axis
shows � � . These figures show that each � � becomes larger
than almost �f'¥¤ . In particular, such tendencies are more
clear as ¡ is smaller. Then, if the delay time for embedding [
is small, the ratio � � is large. As a result, we confirm that our
proposed method is effective even if time series is disturbed
by the observational noise.

Next, we predict the Japanese vowel /a/ as a real time se-
ries data. Results are shown in Fig.3. Each axis is the same
as Fig.2. Figures 3(b), (d), (f) and (h) show each ratio of
improved cases that � � is almost �f'¥¤ . Thus, the proposed
method has no advantage. However, Figs.3(a), (c), (e) and
(g) show that the prediction accuracy of the proposed method
is better than the conventional method at the region of small
number of near neighbor ¡ . From these results, we can con-
firm that the proposed method is also effective to predict real
data.

5. Conclusions

We proposed a new nonlinear prediction method which
combines a local linear prediction[1, 2] with the bootstrap
method[3]. Then, we applied the proposed method to a math-
ematical model[4] and real data[5]. As a result, the proposed
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(f) � �4��'I'*' , noiseless
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Figure 2: Simulation results of the Ikeda map. The param-
eters of the Ikeda map are ~��¦�*- ' , r �§'&- ¨ , �d�§'&- © and�ª�K«�- ' . � is the data length and � is an additive noise
level.
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Figure 3: The simulation results of the Japanese vowel /a/.
The sampling rate is ¨&- « [kHz], and the data length � is �.'*'I' .
method is effective even if the near neighbor size is small or
time series data is corrupted by observational noise. That is,
the bootstrap samples can compensate the lack of local infor-

mation to estimate the Jacobian matrix.
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