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Abstract—
In this report we propose a rank test scheme to detect the

potential nonlinearity in a scalar time series. Our scheme
is based on the fact that, for a stationary linear stochastic
process with jointly symmetric innovations, it proves that
its ordinary least square (OLS) prediction error of linear
autoregressive (AR) predictors are symmetric about zero.
With this knowledge, a discriminating statistic, namely the
Wilcoxon signed rank statistic, can be derived from the pre-
diction error. The advantage of this statistic is that it has
a known null distribution, thus we can perform statistical
inference of the underlying system with exact confidence
level. In addition, the exactness of the null distribution
of the rank statistic does not depend on the sample size,
which is usually not possessed by many other discriminat-
ing statistics such as the correlation dimension. To illus-
trate the discriminating power of the test scheme, we ex-
amine several examples through our methods.

1. Introduction

It has become popular to apply nonlinear statistics such
as the correlation dimension and the Lyapunov exponent
[1] for identification of the underlying dynamical systems
in many fields. However, as it was reported in [2], these
statistics could have finite and predictable values even for a
linear stochastic process with simple autocorrelation, there-
fore, if one intends to identify the determinism of the un-
derlying system by simply examining if its nonlinear statis-
tics are convergent, it is quite possible that one will mis-
take a linear stochastic process for a nonlinear determin-
istic system. This observation suggests that one instead
examines the basic properties, e.g. nonlinearity, determin-
ism, continuity and so on, of the underlying system in or-
der to apply nonlinear analysis methods with more safety.
Various methods based on this viewpoint has been devel-
oped to investigate the distinction between (stationary) lin-
ear stochastic and nonlinear deterministic systems (for ex-
ample, [4, 5]).

In general, these methods focus on exploring the differ-
ence of some characteristic behaviors or properties between
stochastic and deterministic systems [16]. As a measure-
ment of the reliability of the test results, the confidence
level of the inference will be always preferred. However, it
is often difficult for us to find out the exact confidence level,
especially for practical situations wherein only a scalar

time series from an unknown source is available. A remedy
for this case, as proposed in [4], is to first assign a null hy-
pothesis to the underlying system (usually assume that the
underlying system is linear stochastic), and then apply the
bootstrap method to produce a set of surrogate data, which
should have the same statistic distribution as the original
time series under the null hypothesis. One can calculate
the statistic values of both the original time series and the
surrogates, and thus obtain the empirical null distribution
of the statistic in test. One then determines whether to re-
ject the null or not. However, since the exact knowledge
of the statistic distribution is often not available, one will
resort to certain discriminating criterion to help make the
decision more objectively and determine the corresponding
confidence level (if to reject).

In the past research works, there are usually two classes
of discriminating criteria: One is parametric. It assumes
that the statistic follows a Gaussian distribution, and the
distribution parameters, i.e. the mean and the variance,
would be estimated from the finite samples. One can de-
termine whether to reject the null by examining that if
the statistic of the original time series follows the statis-
tic distribution of the surrogates. The corresponding con-
fidence level of inference can be calculated from the es-
timated statistic distribution; The other one, proposed in
[6], is nonparametric. The main idea is that, suppose the
statistic of the original time series is φ0 and the surrogate
values are {φi}Ni=1 given N surrogate realizations, then if the
statistic of both the original time series and the surrogates
follows the same distribution, the probability is 1/(N + 1)
for φ0 to be the smallest or largest among all of the val-
ues {φ0, φ1...φN}. Thus if N is large, when one finds that
φ0 is smaller or larger than all of the values in {φi}Ni=1, it is
quite possible that φ0 instead follows a different distribu-
tion from that of {φi}Ni=1. Hence the criterion rejects the null
hypothesis whenever the original statistic φ0 is the small-
est or largest among {φ0, φ1...φN}, the false rejection rate is
considered as 1/(N + 1) for one-sided tests and 2/(N + 1)
for two-sided ones.

Although the above two criteria are heuristic, they are of-
ten questionable in practice. For example, for the first cri-
terion, the normality assumption may be seriously violated.
For the second, let us discuss it with slightly more details.
Suppose that the statistic values φ0 and {φi}Ni=1 follow the
same distribution and let the range of the surrogate values
{φi}Ni=1 be Ψ, while the support of the null distribution be
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Ω, and ∆ = Ω\Ψ be the complement set of Ψ given Ω.
Then according to the rule, one rejects the null hypothesis
whenever the original statistic φ0 ∈ ∆, and the actual false
rejection rate is the probability Pr(φ0 ∈ ∆|{φi}Ni=1), which
usually cannot be simply estimated according to the num-
ber of surrogate realizations only.

In this report we propose a new test scheme to detect
the potential nonlinearity of a scalar time series. The focus
of this scheme is that we adopt a new measure, namely
the Wilcoxon signed rank statistic, which could be de-
rived from the linear prediction error of the time series and
proves to be a Wilcoxon variate under weak conditions. As
an advantage, this test statistic has a known null distribu-
tion, thus inference with exact confidence level becomes
possible based on the knowledge of the statistic distribu-
tion. In addition, the exactness does not depend on the sam-
ple size, as a good property not shared by many nonlinear
discriminating statistics.

The remaining of this report goes as follows: In Sec. 2
we will mainly introduce our test scheme, including our
null hypothesis, the discriminating statistic and the proce-
dures to determine the confidence level of inference. In
Sec. 3 we illustrate the test power of our scheme through
several examples. Finally we summarize the whole report.

2. A New Test Scheme

As the first step to introduce our test scheme, we need
to specify the null hypothesis. Since we aim to detect if
there exists nonlinearity of the underlying system given a
stationary time series {xi}, we assume that the time series
{xi} is from a linear stochastic process with independent
jointly symmetric innovations, which is the null hypothesis
adopted in the whole report. For clarity, let us explain the
null in more detail. According to the theorem of Wold de-
composition [7, p. 65], under the condition of stationarity,
a purely stochastic process {xi} can be expressed in an infi-
nite moving average (MA(∞)) process. For convenience of
our later discussion, we adopt the p-th order autoregressive
(AR(p)) process instead to model the stationary time series
with the concrete form of

xi = a0 +
∑p

j=1
a jxi− j + εi, (1)

where {εi} denote the innovation terms, which are consid-
ered to be independent of {xi}, mutually independent of
each other and have a distribution with joint symmetry. By
“joint symmetry” of a stochastic process {εi} we mean that
there exists some constant µ so that {εi − µ} and {µ − εi}
have the same joint distributions, i.e. the probability den-
sity function (PDF) f (ε1−µ, ε2−µ, ...) = f (µ−ε1, µ−ε2, ...)
[8]. So it is easy to see that, the linear autocorrelated Gaus-
sian processes examined in [4] are consistent with our null
hypothesis. However, the coverage of our null could be ex-
tended to a wider range, e.g. the stationary processes with
independent (not necessarily identical) and jointly symmet-
ric innovations.

After the selection of the null hypothesis, we then choose
the discriminating statistic. To derive our statistic, let us
first consider the problem of predicting k-step ahead value
of a linear stochastic process {xi} with jointly symmet-
ric innovations {εi}. Let x̂k

i be the prediction at time i
(x̂k

i = xi+k if k � 0), and ek
i = xi+k − x̂k

i denote the cor-
responding prediction error. In [8] Dufour proves that,
when we use an ordinary least square (OLS) linear pre-

dictor x̂k
i = ai,0 +

∑p
′

j=1 ai, j x̂
k− j
i [17] to predict the k-step

ahead value of a linear stochastic processes {xi}with jointly
symmetric innovations, even if we misspecify the fitting
order of the predictor (either lower or higher) and thus
adopt inaccurate estimated parameters in prediction, the
distributions of the prediction error ek

i will be symmet-
ric about zero, i.e. ek

i and −ek
i share the same distribu-

tion. This fact immediately implies that the probability
Pr(ek

i > 0) = Pr(−ek
i > 0) = Pr(ek

i < 0) = 1/2 when
the distribution of ek

i is continuous so that the probability
Pr(ek

i = 0) = 0 in the sense of Lebesgue measure (see [9]
and [10, Lemma 10.1.24] for more details).

Let {Ii}mi=1 be an indicator series with m data points so
that Ii(ek

i ) = 1 if ek
i > 0 and Ii(ek

i ) = −1 if ek
i < 0. Clearly Ii

is a Bernoulli variate uniformly distributed on {−1, 1}, i.e.
Pr(Ii = −1) = Pr(Ii = 1) = 1/2. With this knowledge, we
can derive a class of linear signed rank statistics

S Rm =
∑m

i=1
Ii(e

k
i ) × S i(rank(|ek

i |)) (2)

to test our null hypothesis, where {S i(·)} is the set of scores
of the series {|ek

i |}mi=1 with rank(|ek
i |) denoting the rank

(in the ascending order) of the absolute value |ek
i | among

{|ek
i |}mi=1 [10, p. 252]. Here we choose S i(rank(|ek

i |)) =
rank(|ek

i |) so that

S Rm =
∑m

i=1
i × Ii(e

k
i ) (3)

is the widely used Wilcoxon signed rank statistic, which is
well approximated by the normal distribution N(0,m(m +
1)(2m + 1)/6) for even small numbers, say, m = 15 [11,
chaper 2].

Since we know the distribution of the test statistic, based
on the realization value of S Rm, we can determine whether
to reject the null hypothesis with an exact confidence level.
Take two-sided test as an example, if we want the type-I
error (the false rejection rate of a correct null) to be less
than α, then we first find two critical values nu and nl such
that nu is the largest integer satisfying Pr(S Rm > nu) < α/2
and nl is the smallest integer satisfying Pr(S Rm < nl) <
α/2. If for a time series in test, its statistic S Rm > nu or
S Rm < nl, then we reject the null hypothesis. The false
rejection rate is α, or in other words, the confidence level
to reject the null hypothesis is 1 − α. The procedures to
perform one-sided tests are similar, except that we need
to locate only one critical value, nu or nl, which instead
satisfies Pr(S Rm > nu) < α or Pr(S Rm < nl) < α separately
for right or left side test.
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Table 1: Numbers of rejections of the null hypothe-
sis (out of 1000 replica) for data generation processes
(DGPs) with different fitting orders.

DGP Rejections for the fitting order of
6 7 8 9 10

AR(6) 0 0 0 0 0
ARMA(1,1) 43 41 43 48 48

Henon 1000 999 999 1000 1000
Rössler 1000 1000 1000 1000 1000

We will apply the above idea to test our null hypothe-
sis for nonlinearity detection. The whole procedures go as
follows: For each time series {xi} in test, we first predict
its one-step ahead values {x̂1

i } via the OLS linear predictor
and calculate the prediction error. Suppose the error series
{e1

i }mi=1 has m data points, then we use the normal distribu-
tion N(0,m(m+1)(2m +1)/6) to find the critical values (nu

and nl) for two-sided test at the nominal confidence level
of 95%. If the calculated Wilcoxon statistic S Rm � [nl, nu],
then we can reject the null hypothesis with the false rejec-
tion rate no more than 5%.

3. Examples

In the following we will demonstrate through several ex-
amples the power of our scheme for the null hypothesis test.
The first example is an AR(6) process xi =

∑6
j=1 a jxi− j + εi

with coefficients (a1, ..., a6) = (0.6, 0, 0.5, 0, −0.6, 0.3),
where innovations {εi} are uniformly distributed on inter-
val [0, 0.1] (symmetric about 0.05). The second is an
ARMA(1, 1) process, i.e. xi = a1xi−1 + εi − b1εi−1 with
parameters a1 = b1 = 0.5, where innovation terms {εi} fol-
low the normal distribution N(0, 1). The third data gen-
eration process (DGP) is the Hénon map [12] H(x, y) =
(y + 1 − αx2, 0.3x), where parameter α is uniformly drawn
from the interval [1.35, 1.4]. We will take out the first co-
ordinate x for test. The final case is the Rössler system
[13] with continuous description equations of (ẋ, ẏ, ż) =
(−y − z, x + 0.15y, 0.2 + xz − cz), where parameter c is uni-
formly drawn from the interval [9.5, 10]. The sampling
time is 0.1 time units, and the observations for calculation
are taken from the second coordinate y.

Since usually one does not know the true order of an un-
derlying process, a fitting order has to be specified for pre-
diction. As aforementioned, if the underlying process of
the test time series is linear stochastic with jointly symmet-
ric innovations, misidentification of the fitting order would
also lead to the symmetric prediction error. Thus we need
not seek the optimal fitting order of prediction for our pur-
pose. Instead, we could simply choose several fitting orders
for all of the DGPs, say, those starting from 6 to 10 [18]. To
indicate the power of our test scheme, for all of the DGPs
in examination, we produce 1000 realizations with 2000
data points for each, and predict the one-step ahead values

Table 2: Rejections of the null hypothesis for 1000
temporal-shift surrogates of DGPs with different fit-
ting orders.

DGP Rejections for the fitting order of
6 7 8 9 10

AR(6) 0 0 0 0 0
ARMA(1,1) 0 0 0 0 0

Henon 1000 1000 1000 1000 1000
Rössler 1000 1000 1000 1000 1000

Table 3: Rejections of the null hypothesis for 1000
constrained-realization surrogates of DGPs with dif-
ferent fitting orders.

DGP Rejections for the fitting order of
6 7 8 9 10

AR(6) 0 0 0 0 0
ARMA(1,1) 0 0 0 0 0

Henon 1000 1000 1000 945 766
Rössler 1000 1000 1000 1000 1000

for the last 1000 data points. With the prediction error, we
calculate the Wilcoxon signed rank statistic to determine
whether to reject the null or not. We record the rejection
numbers of our null hypothesis and show them in Table 1,
from which we see that our test scheme indicates remark-
able power. For the linear stochastic processes of AR(6)
and ARMA(1, 1), the rejection rates are less than 5%, as we
expect. While for the two nonlinear systems, their rejec-
tions are far beyond the expected rates, thus we are almost
sure that they cannot be linear stochastic processes.

In practical situations, one often has only a scalar time
series on hand. Therefore, for the reliability of the test,
we suggest that one first uses the bootstrap method, such
as [4] and [14], to generate a number of surrogates, and
then calculates the test statistic of the surrogates and de-
termines whether to reject the null hypothesis or not. If
the actual rejection rate is higher than the nominal one (i.e.
the rate when the original time series is consistent with our
null hypothesis), then we can safely reject the null hypoth-
esis. For illustration, let us examine the previous examples
again. For each example, we generate only one sample,
and use the bootstrap method to generate 1000 surrogates
of the sample. In our test scheme, we adopt the temporal-
shift algorithm in [14] to generate surrogates since it need
not conduct the Fourier transform and thus avoids some of
the shortcomings [19]. The main idea of the algorithm is
that, if a time series {xi} is consistent with our null hypoth-
esis, i.e. it may have a form of xi = a0 +

∑p
j=1 a jxi− j + εi,

then we see that, for any coefficients β and γ, the surrogates
{yτi = βxi + γxi+τ} also follow linear stochastic forms with
the constants of (β+γ)a0 and the innovations of {βεi+γεi+τ}
respectively. A linear stochastic time series {xi} will al-
ways produce linear stochastic surrogates {yτi = βxi+γxi+τ},
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therefore in principle we cannot reject the null hypothesis
test via the Wilcoxon statistic. In our calculations, we let
parameter β be uniformly drawn from the interval [0.6, 0.8]
and parameter γ = (1 − β2)1/2 to produce surrogates. The
results of null hypothesis test are presented in Table 2, from
which we see that, for the two linear stochastic processes,
we cannot reject the null hypothesis; while for the two non-
linear systems, the null hypothesis is rejected at very high
rates as expected. For comparison, we also generate 1000
surrogates through the constrained-realization method [4].
The test results are listed in Table 3, from which we could
obtain the same conclusion.

4. Conclusion

To summarize, we have proposed an exact nonpara-
metric inference scheme to detect the potential nonlinear-
ity in a scalar time series. The exactness of our infer-
ence comes from the knowledge of the exact distribution
of the adopted discriminating statistic, i.e., the Wilcoxon
signed rank statistic, which indicates remarkable test power
through the several examples examined in this communica-
tion. One advantages of this statistic is that it possesses the
known null distribution. Thus it is easy for us to find the ex-
act confidence interval for the inference of the underlying
process. Furthermore, the exactness of the statistic distri-
bution does not rely on the size of the sample time series
in test. Comparatively, for many nonlinear discriminating
statistics adopted in the literature, e.g. the correlation di-
mension, computations with too short samples may cause
serious distortions.

Before the end of our report, we would like to mention
a problem about the Wilcoxon signed rank statistic, that is,
the sensitivity of this statistic to nonlinearity may dramat-
ically decrease for certain nonlinear systems. For exam-
ple, when we apply our test to the Logistic map, although
we can still reject the null hypothesis, the rejections, for
1000 tests at the nominal rejection rate of 5%, decrease to
144, 133, 147, 152 and 166 at the fitting orders of 6, 7, 8, 9
and 10 respectively, quite low rates compared to the non-
linear cases in Table 1. Indeed, the fact is that it is difficult
to find universal scores in Eq.(2) to obtain the most power-
ful signed rank statistic for all systems (see [10, Theorem
10.1.19.]).
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