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Abstract—In an “imperfect model scenario”, the choice
of values for the model’s parameters is not merely a mat-
ter of “estimation”, rather we must “fit” the parameters ac-
cording to some criterion for the performance of the model.
For time-series, one such criterion is that of prediction. A
“predictionist” model is fit so as to optimise for short term
prediction. Predictionist models, however can fall short in
other ways — a model that makes very good short term pre-
diction might fail to have reasonable long term behaviour
when “free-run”, for example. Interestingly, though, “be-
haviourist” models (ones which optimise a free-running be-
havioural criterion) often perform quite robustly when con-
sidered as predictors.

We investigate these issues in the context of “ignorance”
— a score for measuring the performance of predictors. We
develop a behavioural analog of ignorance and derive a few
interesting connections between the two scores.

1. Introduction

When we build models from time-series data, we are
faced with the problem of selecting a particular model (of-
ten by choosing values for a number of parameters) from
amongst a larger model class. The problem of making this
choice is sometimes phrased in terms of statistical esti-
mation in which the aim is to estimate the “true” values
for the parameters of the model class. Such an approach
runs in to the problem of “model-imperfection”, however.
Our model-classes are almost never perfect — “truth” is
almost never contained within the model class. Further-
more, within many model classes, the parameters don’t
even have an obvious correspondence with quantities in the
real world. The philosophical implications of procedures
that attempt to “estimate” true values of non-existent quan-
tities are worrying to say the least!

A more philosophically sound stance is to accept that
the problem of choosing the values for the parameters is
really a problem of fitting rather than estimation. That is,
the parameters are chosen so as to be fit for some particular
purpose. In a perfect-model scenario, that is, when truth
lies within the model class, for most reasonable purposes
the best fit model will in fact be the truth, however outside
of this, one would expect models fit for different purposes
to differ.

In Figure 1, we show time-delay plots for data taken
from a non-linear circuit, and two free-running realisa-
tions of different models of that circuit, both within the
same model class. Model 1 was fit so as to optimise
its performance at making short-range predictions, while
Model 2 was fit so as to optimise its long-term “behaviour”.
Specifically, both models are taken from a class of ellip-
soidal basis-function models, where given the time-series,
y1, y2, . . ., the model is:

yt+1 = f (yt, yt−5, yt−10) + εt,

where f =
∑k

i=1 ωiΦi is a linear sum (with parameters ωi)
of basis functions, either ellipsoidal,

Φi(x) = e−((x−ci)T Ri
T Ri(x−ci))pi

,

(with parameters ci, pi and diagonal Ri) or members of the
standard affine basis. The εt ∼ N(0, σ2) are i.i.d with pa-
rameter, σ. Both models have k = 30 basis functions.

Model 1 was built using methods similar to those de-
scribed in [3, 4] — f is chosen to minimise the average one
step squared error, ( f (yt, yt−5, yt−10) − yt+1)2, that is to max-
imise its likelihood. The variance, σ2, of εt is also chosen
to maximise likelihood. Thus from the standpoint of statis-
tical estimation, Model 1, is the maximum likelihood esti-
mate. From the standpoint of fitting for a purpose, however,
one notes that it attempts to place (on average1) the greatest
possible probability on the one-step outcome, yt+1 — that
is it optimises short-term (1-step) predictions. Model 1 can
be said to be a predictionist model.

Even a casual examination of the delay plots in Fig-
ure 1 reveals that the maximum likelihood, predictionist,
Model 1 fails to reflect important dynamical properties of
the original system — Model 1 is essentially a slightly
noisy periodic orbit; occasionally the noise forces it suf-
ficiently far that it explores other parts of the attractor, but
generally it fails to do so with a frequency matching that
suggested by the data. Model 1 possesses poor behaviour.
Roughly, behaviour can be defined as the property that the
model exhibits the same sorts of phenomena with similar
frequencies to those exhibited by the original system.

Model 2 was created by adjusting the parameters of
Model 1 so as to minimise a behaviourist criterion. We

1Strictly speaking, the geometric average.
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Figure 1: Delay plots for data from a non-linear circuit
and two free-running models. Model 2 exhibits better “be-
haviour”, although Model 1 makes better 1-step predic-
tions.

shall defer the discussion as to the exact criterion used until
Section 3, however we will note that the procedure is sim-
ilar to those presented in [7, 5, 6]. The criterion attempts
to minimise the difference in the distributions of strands of
trajectories found in the data and the corresponding strands
of trajectories generated by the model. In Figure 1, it can
be seen that, at least in terms of exploration of the attractor,
Model 2 better captures the dynamical features of the data.
It should be emphasised that Model 2 is still, of course,
imperfect — close examination of the delay plots reveal
differences between model and data.

The plots of Figure 1 demonstrate that in the imperfect
model case, there is a tradeoff between the different criteria
we would like our models to have; specifically the predic-
tionist ability to make good short term predictions and the
behavioural ability to reflect longer range dynamical prop-
erties of the original system. Which model is better? The

answer to that question must depend upon what the model
will be used for — outside the perfect model scenario, there
is no such thing as a single “best” model. If one wished to
use the model solely to make short term predictions, then
clearly the predictionist Model 1 is better. If one would like
to capture more of the long-term dynamics of the system,
then Model 2 seems a better choice.

It is important to note, however, that behaviourist mod-
els seem to enjoy a certain robustness over predictionist
models, and this is explored in some detail in [7]. If we
assume that the free-running long-term distribution2 of ob-
servations exhibited by the original system is given by the
family of densities, p, and those for the model given by p̃,
we can make the following definitions: First, the average
prediction error,

APEP,F =

∫
Rm

p(P)
∫
Rn
|p̃(F|P) − p(F|P)| dFdP,

where P = yt−m+1, . . . , yt is thought of as the past on which
a prediction is to be made and F = yt+1, . . . , yt+n is thought
of as the future to be predicted. It measures the average dis-
tance in 1-norm between p̃(F|P), the predicted distribution
of the future given P, and p(F|P), the actual distribution of
the future given P. Secondly, the behaviour error,

BEH =

∫
Rl
|p̃(H) − p(H)| dH,

where H = yt, . . . , yt+l−1, is the partial history of length
l. The behaviour error measures the distance in 1-norm
between the distribution of partial histories exhibited by the
model and the original system. The following theorem can
be easily proved:

APEP,F ≤ BEP,F + BEP ≤ 2BEP,F (1)

The point is that the cost to prediction of pursuing good
behaviour is bounded. That is, a well behaved model will
be not too bad as a predictor. The converse is not true. In
[7], examples are constructed making APE arbitrarily small
while BE remains large — the pursuit of prediction is not
guaranteed to produce good behaviour.

2. Ignorance and Prediction

Whilst the theorem, (1), provides some reassurance for
preferring, in general, a behaviourist approach to mod-
elling, it leaves something to be desired. The problem is
that the quantities, APE and BE, are not directly acces-
sible. For example, given our model, we have the prob-
abilistic prediction, p̃(F|P), but generally we don’t know
p(F|P). This mismatch is the central problem for any at-
tempt to verify probabilistic forecasts — we only ever have
the point outcome, never its “true” distribution given the
data.

2We need to assume that these distributions have densities which, at
least, our models do.
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Figure 2: Bootstrap averages of the relative ignorance of
Model 1 vs “Climatology”, Model 2 vs “Climatology”, and
Model 2 vs Model 1 at various lead times. A relative igno-
rance for A vs B of less than zero indicates that A has better
predictive performance.

There are, none the less, a wide range of scores designed
to solve the problem of evaluating probabilistic prediction.
One of the most appealing is the ignorance [2, 8]. Given
the model distribution, p̃, the information, P, on which the
prediction is to be made, and the point outcome, F, the
ignorance is defined:

ignP(p̃; F) = − log p̃(F|P)

The smaller the ignorance, the “better” the prediction. Of
course, the ignorance of a single prediction is not very in-
formative, in practice, one will be interested in the average
ignorance over a number of test cases. This is, of course,
an estimate of the expected ignorance.

Other than its simplicity, the ignorance has a number of
pleasing properties: It is proper, that is, given beliefs about
the true distribution, i.e. p(F|P) = q(F), one expects to

minimise ignorance by the prediction, p̃(F|P) = q(F). Also
it is local, meaning that its value does not depend upon
parts of the predicted distribution far from the actual out-
come, F, in fact, ignorance is essentially the only score that
is proper, local, and smooth. Ignorance has an information
theoretic interpretation in that it measures the information
needed to describe the outcome to a receiver in possession
of the prediction. (The degree to which the receiver re-
mains “ignorant” of the outcome.) The relative ignorance
between two models is invariant of the co-ordinate system
used to describe the outcome. The relative ignorance also
has an interpretation in the theory of betting. If a bettor and
the house each rationally bet or set odds on the outcome,
then the bettor expects a log-return equal to the relative ig-
norance of the house.

In Figure 2, we illustrate the use of ignorance by showing
plots of average relative ignorance between the two mod-
els and a “climatology” which predicts by sampling from
the data without taking any account of dynamics. We show
the ignorance for predictions at “lead-times” between 1 and
100 steps. The actual application of ignorance can be dif-
ficult — in principle we have p̃(F|P), however in practice,
this density can be difficult to compute. One solution is to
approximate by using an ensemble, E, — a finite sample
from p̃(F|P). Letting the size of the ensemble be N, the
dimension of F to be d and r the Euclidean metric, it can
be shown that the distance score,

D(E; F) = Kd + log N + d log r(F, E),

becomes an unbiased estimator of the ignorance as N in-
creases, for some constant Kd. We have used ensembles
of size N = 100. Because only a finite amount of out-
of-sample data is available, we have plotted bootstrap [1]
intervals for the averages. As should be expected, Model 1
outperforms Model 2 for the shortest lead-times, however,
for longer lead-times, Model 2 makes better predictions.
For the improved dynamical behaviour, the slightly poorer
predictions for the shortest lead-times seems generally to
be a reasonable trade-off. If we care about longer lead-
times, the behaviourist model is definitely to be preferred.

3. Ignorance and Behaviour

If we wish to develop an analog of the theorem, (1),
in which predictive performance is measured by the igno-
rance, how should we measure behavioural performance?
Noting that behaviour aims to match the unconditioned dis-
tributions of partial histories, H, an obvious possibility is:

ign( p̃; H) = − log p̃(H)

By the Kullback-Leibler inequality, this is expected to be
minimised when p̃ = p. The desired theorem is easy
to derive. Since p̃(F|P) = p̃(P, F)/p̃(P), − log p̃(P|F) =
− log p̃(P, F) + log p̃(P). So,

E
(
ignP(p̃; F)

)
= E
(
ign( p̃; P, F)

) − E (ign(p̃; P)
)
.
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The term on the left is an expected predictive ignorance,
and the terms on the right are expected behavioural igno-
rances. The terms on the right form a difference, suggest-
ing that the predictive ignorance can be small, even if the
behavioural terms are large.

E
(
ign( p̃; P)

)
= −

∫
Rn

p(P) log p̃(P) dP

≥ −
∫
Rn

p(P) log p(P) dP

= h(P),

the entropy. So we have our bound (letting H = P, F):

E
(
ignP(p̃; F)

)
+ h(P) ≤ E (ign( p̃; H)

)

That is, the behavioural ignorance bounds the sum of the
predictive ignorance and the entropy. The entropy isn’t di-
rectly accessible, but at least it is independent of the model.
Estimates of the other two quantities can be made by com-
puting averages.

The parameters of Model 2 were fit by minimising a dis-
tance score estimate of such a behavioural ignorance.

4. Combining Predictions or Models

The densities we have been using up to now actually
have to be defined with respect to some reference mea-
sure space, (Rn,B, µ); the density, p̃, gives probability∫

B
p̃(x) dµ(x) to the event B ∈ B. By using a restriction,
A ⊂ B, of the σ-algebra of events, we can create versions
of ignorance which ignore certain details of the outcome.
The trick is to write p̃|A(·|P) = E ( p̃(·|P)|A)3, and define
the restricted ignorance,

ignAP(p̃; F) = − log p̃|A(F|P).

It can happen that we have two models, with densities, p̃
and q̃, with the property that,

E
(
ignP(p̃; F)

)
< E
(
ignP(q̃; F)

)
,

but,
E
(
ignAP(p̃; F)

)
> E
(
ignAP(q̃; F)

)
.

That is, p̃ makes better predictions than q̃, but we have
found a strength, encoded by A, which q̃ has over p̃. It
is then possible to define combined predictions,

r̃(F|P) = p̃(F|P)
q̃|A(F|P)
p̃|A(F|P)

,

and,

E
(
ignP(r̃; F)

)
= E

(
ignP( p̃; F)

)
+

E
(
ignAP(q̃; F)

) − E (ignAP(p̃; F)
)

< E
(
ignP( p̃; F)

)
.

3Too much expectation notation is confusing.

This procedure is reasonably straight-forward when
dealing with predictions, the analogous situation of com-
bining models (to reduce behavioural ignorance) is more
complicated. The problem is that the combination, r̃, does
not necessarily correspond to a long term distribution.4

5. Conclusions

We have illustrated some of the tradeoffs to be con-
sidered when fitting models to time-series in the imper-
fect model scenario. In particular, we considered build-
ing predictionist and behaviourist models of data from a
non-linear circuit, showing the relative robustness of the
behaviourist model over the predictionist. We showed how
the predictionist score of ignorance can be extended into
the behavioural setting and finally offered some hint as to
the possible advantages of doing so.
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