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Abstract—We suggest incorporating dynamical infor-
mation such as locations of fixed points into parameter
estimation algorithms in order to improve the method of
reconstructing dynamics from time series. We show how
the process of reconstruction using the extended or iter-
ated Kalman filter can be easily modified to include the
additional information. We demonstrate the methods using
data from the Chua circuit operating in the chaotic regime.
We find the models reconstructed by using constraints can
better approximate the unstable fixed point structure of the
underlying systems.

1. Introduction

This paper is concerned with a dynamical-systems ap-
proach to nonlinear systems identification [1]. The ap-
proach is based on Takens Embedding Theorem [2] which
allows reconstruction of an equivalent phase space to the
original (unknown) system from observations in the form
of a time series. The dynamics in this reconstructed phase
space can be approximated using nonlinear functions. The
estimation of model parameters can result in nonlinear op-
timization problems.

The extended Kalman filter (EKF) algorithm has been
suggested as an alternative to more traditional methods for
solving these optimization problems. In [4] the benefits
of Kalman filtering for parameter estimation when neural
networks are the approximating functions are shown.
Puskorius & Feldkamp [5] had earlier pointed out how
the parameter-based EKF training algorithm can be nat-
urally incorporated into nonlinear control architectures.
Burgmeier [6] and Walker & Mees [7] explain how all pa-
rameters in a radial basis function model can be estimated
using the EKF algorithm.

The problem of reconstructing dynamics of systems
by estimating parameters of nonlinear functions can be
thought of as “black-box” modelling. One can imagine
that a more “grey-box” modelling approach would pro-
duce, in some sense, improved nonlinear models. Grey-
box modelling can be thought of as an approach to recon-
struction where additional information is used in the mod-
elling process. For example, if the system is known to pos-
sess symmetry, one could select basis functions which pre-
serve such symmetries. It might be expected that the re-
sulting models would exhibit dynamical properties of the
system more closely. Indeed in [8] it was shown that basis
functions which mimicked a fading memory assumption

resulted in more accurate free-running models over stan-
dard radial basis function models. An alternative “grey-
box” approach to modelling is to include properties of the
system as constraints in the parameter estimation optimiza-
tion problems.

It is known that the (unstable) periodic orbits of chaotic
systems play a significant rôle in the structure of attrac-
tors [9]. We suggest using the location of unstable fixed
points (UFP), as additional constraints in the parameter es-
timation process1[10]. The EKF is a natural environment
in which to incorporate such constraints. The location of
UFP’s and low-order periodic orbits can be determined
from data [11, 12, 13]. The purpose of this paper is to
demonstrate the idea of using UFP’s as constraints within
the EKF framework. The errors in estimating the location
of UFP’s can be used to advise on levels of noise covari-
ances within the EKF.

In Section 2 we discuss the nonlinear functions we use
to reconstruct dynamics. In Section 3 we outline the EKF
algorithm in the context of parameter estimation and intro-
duce the modifications required in order to use the Kalman
filter with constraints. Our use of constraints can also natu-
rally be incorporated into the iterated Kalman Filter (IKF).
The approach is demonstrated using data from an electronic
circuit system which can exhibit chaotic dynamics; the well
known Chua circuit [15].

2. Nonlinear models

A discrete time model of a system with state z ∈ RL is
described by

zk+1 = F[zk, a] (1)

where a represents the system parameters. The problem
of modelling the dynamics from scalar time series requires
the state z to be reconstructed. Given a scalar time series
{yt}Nt=0 the state zk can be represented by

zk = (yk−(m−1)τ, . . . , yk−τ, yk) (2)

where m is called the embedding dimension and τ is the
time delay lag. There are a number of methods which can
be used to determine an appropriate τ with a good pre-
scription being to choose the first minimum of the average

1The stability of the fixed point does not appear to be critical and so
locations of stable fixed points, if known, could also be used.
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mutual information function [1]. Similarly, a recognized
method for selecting a suitable embedding dimension is
false nearest neighbours [1].

The dynamics F[·] for a time delay embedding consist of
a simple shift operator together with a (nonlinear) scalar-
valued function f , i.e.,

yk+1 = f (zk). (3)

There are a number of choices to use as the function f .
A class of models which have been particularly successful
in capturing nonlinear dynamics from data is the so-called
pseudo-linear models [3] which include a linear combina-
tion of linear and nonlinear basis functions. This is the
class of models we will consider in this study, namely,

yk+1 =

K∑
i=1

ωiφ(‖ci − zk‖) +
m∑

i=0

αiyk−iτ + β. (4)

The function φ(·) is a radial basis function and ωi, αi and β
are weight parameters to be determined. The ci are the ra-
dial basis centres whose locations must also be determined.
In this paper we use the following basis function

φ(u) =
1

1 + cosh(−δu)
, u ≥ 0. (5)

The scale factor δ is another parameter requiring determi-
nation but we set it equal to 1 here. We will explain how
the EKF can be used to estimate all unknown parameters
of a pseudo-linear model but for ease of exposition we re-
strict the problem to determining the weight parameters in
the examples.

The steady-state or long term behaviour of a dynamical
system is of particular interest. The properties of unstable
fixed points and unstable periodic orbits of a system play an
important rôle in determining this behaviour. An unstable
fixed point of a discrete time dynamical system satisfies

z̄ = F[z̄, a] (6)

where z̄ denotes the UFP. The fixed points of a pseudo-
linear model can be seen to satisfy

p = f (p) (7)

where p = (p, p, . . . , p) ∈ Rm is the fixed point location
in reconstructed phase space. There have been a number of
methods proposed in the literature for extracting dynamical
information such as UFP locations. These include studying
close returns [11], or investigating properties of locally re-
constructed models [12, 13]. We use a modification of the
method in [12] to determine UFP’s where neighbours in
reconstructed space rather than time are used to construct
local dynamics.

3. Extended Kalman filter and parameter estimation

The Kalman filter and its variants are statistical state esti-
mators. The algorithms are typically used to achieve noise

reduction in signal processing but can be applied to the
problem of parameter estimation. The system model re-
quired by the Kalman filter for this particular application
is

at = at−1

yt = f (zt, at) + nt (8)

where at represents the model parameters. These can be the
pseudo-linear weights, the location of the centres and the
values of radial basis function scale parameters. There is no
additive noise term in the evolution of at as the parameters
are assumed to be stationary. The second equation is the
pseudo-linear model used to predict the time series values
yt and zt is the embedded time series data. The noise term
nt can be thought of as the fitting error and is assumed to
be from a Gaussian distribution, i.e., nt ∼ N(0,R). The
parameters are initialized with a0 ∼ N(â0,Pa0 ) where â0 =

E[a0] and Pa0 = E[(a0 − â0)T (a0 − â0)]. The EKF update
equations for the system (8) takes the form [16, 7, 4]

time-update equations

â−t = at−1

P−at
= Pat−1

measurement-update equations

Kt = P−at
CT

t (CtP−at
CT

t + R)−1

ât = â−t +Kt[yt − f (ẑt, ât)]
Pat = (I −KtCt)P−at

where

Ct =
∂ f (z, a)
∂a

|ât

The matrix Kt is referred to as the Kalman gain. The terms
[yt − f (ẑt, ât)] are known as the innovations.

3.1. Constrained Kalman Filtering

The extended Kalman filter has proved to be success-
ful in estimating the parameters of nonlinear models which
capture the dynamical behaviour of nonlinear systems [7].
We suggest treating important properties of the system such
as UFP locations as constraints to be met as accurately as
possible. The setup of the Kalman filter is readily amenable
to including such constraints. We do this by modifying the
observation model of (8) to include the model’s approxi-
mation to the UFP’s. The system model for applying the
Kalman Filter with constraints, referred to in the sequel as
the KFC algorithm, becomes

at = at−1

yt = f (zt, at) + nt

0 = p − f (p, at) + mt
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where the new term includes mt ∼ N(0,Rp) where Rp re-
flects the accuracy of the knowledge of the fixed point lo-
cation. The value Rp is set to can be guided by the error
in estimates of the UFP’s. The filter update equations are
essentially unchanged but the matrices and vectors in the
measurement update equations now account for Np + 1 ob-
servation functions, where Np are the number of UFP con-
straints we try to meet. Explicitly the measurement update
equations become

Kt = P−at
CT

t (CtP−at
CT

t + R′)−1

ât = â−t +Kt[
(

yt − f (ẑt, ât)
0 − (p − f (p, at))

)
]

Pat = (I −KtCt)P−at

where

Ct =

( ∂ f (z,a)
∂a |ât

∂ f (p,a)
∂a |ât

)
and R′ =

(
R 0
0 Rp

)

The time update equations remain unchanged.

3.2. Iterated Kalman Filter

The iterated Kalman Filter is a modification of the
Kalman filter conceived by the intuition that using the new
state estimate to improve the “innovation” should lead to a
better update of the state estimate. That is, we re-linearize
the observation function about the current state estimate in
an iterative fashion at each measurement update step be-
fore advancing to the next time update step. The updated
equations are

Ki
t = P−at

CiT
t (Ci

tP
−
at

CiT
t + R′)−1

âi+1
t = â−t +Ki

t(yt − c(âi
t) − Ci

t(â
−
t − âi

t))

The IKF works by iterating over i M-times and then updat-
ing the covariance by Pat = (I−KM

t CM
t )P−at

before advanc-
ing to the next time update step. The IKF gives greater
weight to the observations over the dynamics as M in-
creases (see [14] for an example). The KFC can clearly
be modified in a like manner by including the constraints
in an IKF update step.

4. Examples

In this section we examine the above ideas with appli-
cation to Chua’s circuit [15] operating in the regime which
produces a double scroll attractor. There are three fixed
points given by (x∗, y∗, z∗) = (0, 0, 0) and (x∗, y∗, z∗) =
(r, 0,−r) with r = ±m0−m1

1+m1
where m0 = −8/7 and m1 =

−5/7. We integrated the Chua circuit equations with ini-
tial condition (−1, 0, 0) from t = 0s to t = 2000s sampling
every 0.1s and then retained the last 3000 data points. We
observe the xt component of the state subject to observa-
tional noise distributed as N(0, 0.1) and reconstruct predic-
tive models of the circuit from this time series.

We circumvent the problem of model selection by an ini-
tial screening process. We reconstruct radial basis mod-
els with increasing numbers of centres chosen by k-means.
For each model we estimate the parameters (weights) using
least squares and calculate the Schwarz information crite-
rion (SIC) [17] and select a model size which results in a
minimum. A calculation of mutual information suggests
a time delay lag of 6 and false nearest neighbours with
the selected lag suggests a 3-dimensional embedding. The
screening process using SIC suggested a model size some-
where around 35.

A portion of the time series is used to estimate UFP’s
of the system to be used in the KFC algorithm. The al-
gorithm in [12] modified for neighbours in space suggests
two definite fixed points with the possibility of a third at
the origin coinciding with the true fixed points of the Chua
circuit. We apply the KFC algorithm in four cases: (i) only
the UFP at the origin is used as a constraint (ii) the two def-
inite UFP’s at −r and r suggested by the algorithm (iii) all
three UFP’s are used as constraints and (iv) the IKF with
constraints for M = 50 – an IKFC – is applied using all
three UFP’s. The noise distribution representing the uncer-
tainty in the UFP determination is given by the distribution
N(p, 0.1). The noise term associated with the models fit er-
ror is set to N(0, 2σ2

y) where σy is the standard deviation of
the time series data. The initial parameter weights are set
to zero except for one so that the initial model is given by
yt+1 = yt.

The results are summarized in Table 1. The accuracy of
the LS and EKF models with respect to approximating the
UFP’s is rather poor. The performance of the KFC models
with respect to this measure clearly demonstrates the bene-
fits of incorporating the UFP’s as constraints. The KFC(0)
model accurately models the fixed point at the origin but
not the other two. The KFC(−r, r) model approximates the
±r fixed points very well but the origin is predicted poorly.
Meanwhile the KFC(−r, 0, r) model is able to approximate
all UFP’s extremely accurately with only a small loss in
overall RMS error. In this example there does not appear
to be an advantage of using the iterated form of the filter,
however, for more complicated systems, or additional con-
straints it may be a worthwhile option. Figure 1 gives a
view of the fixed point accuracy of the local accuracy of
the LS, EKF and KFC(−r, 0, r) models.

5. Summary

We have described the idea of using the fixed point struc-
ture of a dynamical system to aid parameter estimation of
nonlinear models. This information can take the form of
constraints in the optimization problem associated with re-
construction. The extended Kalman filter algorithm pro-
vides a natural framework in which to incorporate such
constraints; one simply includes a measure of model fixed
point accuracy as an extra observation function in the EKF
system model. We showed that the KFC models capture the
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LS EKF KFC (0)
0 0.01 0.006 9.53 × 10−6

(−r) 0.019 0.041 0.041
r 0.013 0.037 0.037

KFC (−r, r) KFC(−r, 0, r) IKFC(−r, 0, r)
0 5.67 × 10−3 9.68 × 10−6 9.68 × 10−6

(−r) 1.15 × 10−4 1.16 × 10−4 1.16 × 10−4

r 1.30 × 10−4 1.30 × 10−4 1.30 × 10−4

Table 1: Model accuracy of fixed point estimation for the
Chua circuit.
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Figure 1: Accuracy of Chua model fixed points. The top
left panel shows a plot of f (r) − r verses r for the models
obtained using least squares (dashed), EKF (dotted) and
KFC algorithm with three fixed point constraints (solid).
The IKFC is a dot-dash line indistinguishable in the plot
from the KFC line. The remaining three panels are close
up views of the fixed point accuracy (UFP’s are indicated
by stars).

local dynamics structure better than models reconstructed
using least squares and ordinary extended Kalman filters.
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