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Abstract—When we attempt to generate more electric-
ity by controlling wind turbines, the first step is to predict
the wind. However, it is difficult to predict the wind just
from the past observations at that point because the wind
does not have temporal correlation much. Here we set up
an experimental observation and tried to predict the wind
using spatial correlation. By constructing an embedding
for multivariate time series and building a nonlinear model,
we found that the wind is better predicted from the past ob-
servations at neighboring points rather than from those at
the predicted point only.

1. Generatingmore electricity using the same wind tur-
bines by control — motivation

Every year, more attention has been paid to wind farms
because the wind is a clean energy. The number of wind
turbines is also increasing. Here an important question is
whether we can use these wind turbines more effectively.
To answer this question, we are proposing a general idea
under which we try to produce more electricity by adjusting
the turbines to the future wind.

2. The wind cannot be predicted well from the past ob-
servations at that point only — problem

When we try to adjust the wind turbines to the future
wind, the first step is to predict the wind. However, pre-
dicting the wind is difficult. As shown in Table 2, making
a predictive model using the past observations at that point
shows a predictive ability that is almost similar to letting
the values 1 second before be the predictions.
This poor result may come from the weak serial depen-

dence and nonlinearity of the time series. We applied the
surrogate data for testing the serial dependence [1] and
nonlinearity [2, 3]. We used data of the wind we observed
with 50 Hz for about 1 hour on Komaba campus at The
University of Tokyo on 25 August 2004. Although the data
are 3 dimensional including the east wind (component from
the east to the west), the north wind, and the upward wind,
we used the east and the north winds as a scalar time series.
The surrogate test was the following procedure:

1. We initially took the moving average of 0.5 seconds.

2. Second we split the two scalar time series into seg-
ments of length 10000. Therefore, the number of seg-
ments is 36.

3. Third we matched the ends so as to avoid artificial
high frequencies which may be produced during the
discrete Fourier transforms [4].

4. Fourth for each segment, we applied the method of
Kennel [5] and confirmed its stationarity.

5. Fifth we generated 39 random shuffle surrogates [1]
and tested the serial dependence. For the test statistic,
we used the prediction errors.

(a) We split the segment into two sub-segments.
The last 500 points were used for evaluating the
prediction, and the remaining points, for build-
ing a predictive model.

(b) We embedded the time series using the meth-
ods of Fraser [6] and Kennel [7] and predicted
τ steps ahead, where τ is selected from the first
minimum of the mutual information [6].

(c) The prediction was evaluated with the root mean
square errors.

Then only 16 out of 36 segments have shown the serial
dependence.

6. Lastly for each segment which showed the serial
dependence, we generated phase-randomized surro-
gates [2] and iterative amplitude adjusted Fourier
transform surrogates [3] for testing the nonlinearity.
Out of 16, only 3 segments have passed the test of
nonlinearity.

3. From temporal correlation to spatial correlation —
hypothesis

As shown in the previous section, predicting the wind us-
ing temporal correlation is hard because there is not much
temporal correlation. However, to control the wind tur-
bines, we need to predict the wind somehow. Here we pay
attention to spatial correlation.
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Figure 1: Setting of observation.

The wind blows from the upstream. Therefore, if we
observe the wind at the upstream some time before, we may
be able to predict the wind at the downstream better.

4. Observing the wind using two anemometers — ex-
periment

To test the hypothesis, we set up an experimental obser-
vation. This observation was done on 24 March 2005 on
Komaba campus at The University of Tokyo for about 1
hour. An anemometer was located about 5m north from
another (Fig. 1). The scene of observation was shown in
Fig. 2. We call the north one as anemometer 1, and the
south as anemometer 2.
During the observation, the southward wind was domi-

nant.

5. Correlation between two anemometers — analysis

Before doing any analyses, we took the moving average
of length 1 second and resampled it every 1 second. We call
the east wind, north wind, and upward wind of anemome-
ter 1 at time t as x1(t), x2(t), and x3(t), respectively, and
those of anemometer 2 as y1(t), y2(t), and y3(t), respec-
tively. We calculated the correlation coefficient between
the north winds x2 and y2 at the two anemometers. The re-
sult is shown in Fig. 3. We found a peak at 1–2 seconds,
meaning that there is a strong correlation between the cur-
rent north wind at anemometer 1 and the north wind 1–2
seconds before at anemometer 2.
We also made two scatter plots in Fig. 4. The fig-

ure shows that when the future north wind x2(t + 1) at
anemometer 1 is soft, the current north wind x2(t) at
anemometer 1 gives a smaller variance, while the current
north wind y2(t) at anemometer 2 gives a smaller variance
when the future north wind x2(t + 1) at anemometer 1 is
strong. This means that when x2(t + 1) is soft, the cur-
rent observation x2(t) at anemometer 1 may give the better

Figure 2: Scene of observation.

prediction, while when x2(t + 1) is strong, the current ob-
servation y2(t) at anemometer 2 may provide the superior
prediction.
These are supportive evidence that the spatial correlation

can help predicting the wind.

6. Predicting the wind — method

Using the observation obtained in Section 4, we built
nonlinear predictive models for predicting x2(t + 1) using
the past observations up to time t. We split the data into
two segments: the last 500 points for evaluation and the
remaining points for modeling.
Firstly we obtained an embedding, or state to predict,

using the modeling segment. Here we used the following
cross validation: Let C be the set of candidate delays. For
example, if we consider the maximum of 30 delays for each
of xi(t) and y j(t), we have C = {xi(t − dx), y j(t − dy)|i, j =
1, 2, 3, dx, dy = 0, 1, · · · , 29}.

1. From the modeling segment, we randomly select 1000
points for modeling, and other 1000 points for evalu-
ation.

2. For each possible non-uniform embedding, or each
possible combination of candidate delays,

(a) by following the method of Judd and Mees [8]
with the normalized maximum likelihood [9] as
a model selection criterion, construct a radial ba-
sis function model using the points for modeling,
and
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Figure 3: Correlation coefficient between the north winds.
The horizontal axis shows the time difference of the north
wind at anemometer 1 from that at anemometer 2.

(b) evaluate the prediction error (root mean square
error) using the points for evaluation.

3. Minimize the prediction error over possible non-
uniform embeddings.

After obtaining the optimal embedding, we built a ra-
dial basis function model by using the method of Judd and
Mees [8] with the normalized maximum likelihood [9] as a
model selection criterion.
We considered three sets of candidate delays. When

C = {xi(t− dx), y j(t− dy)|i, j = 1, 2, 3, dx, dy = 0, 1, · · · , 29},
we predict the future north wind x2(t + 1) at anemometer 1
using the past observations at the two anemometers. When
C = {xi(t − dx)|i, j = 1, 2, 3, dx = 0, 1, · · · , 29}, it corre-
sponds to the case where we predict x2(t + 1) just using the
past observations at anemometer 1. Even we considered
the case C = {y j(t − dy)|i, j = 1, 2, 3, dy = 0, 1, · · · , 29},
where we predict x2(t + 1) with the past observations at
anemometer 2 only.
In the method of Judd and Mees [8], the centers of ra-

dial basis functions are selected using points in the embed-
ded time series perturbed with Gaussian noise. Therefore,
the performance may vary according to a set of the cen-
ters. Hence, for each case, we built 10 different radial basis
function models and obtained the average and standard de-
viation of the prediction errors.

7. The wind was better predicted using the the past ob-
servations at the upstream — results

Firstly we listed in Table 1 the delays selected for each
case. We can see that when using the observations at
the single anemometer, the delays were selected such that
we can reconstruct the dynamics using the temporal cor-
relations, while when using the observations at the two
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Figure 4: Scatter plot between the current north wind x2(t)
and its future x2(t + 1) at anemometer 1 (left) and that be-
tween the current north wind y2(t) at anemometer 2 and the
future north wind x2(t + 1) at anemometer 1.

anemometers, the delays were selected so that we use the
spatial correlations between them.
The prediction performances were compared in Table 2.

When using the past observations at anemometer 1 only,
the performance was comparable with the case where the
values 1 second before were regarded as the predictions.
When using the past observations at the two anemometers,
the prediction was 20 % better than using the past obser-
vations at anemometer 1 only. When using the past obser-
vations at anemometer 2 only, the performance was worst.
It seems that the past observations at anemometer 2 them-
selves do not contain enough information to predict the fu-
ture at anemometer 1 effectively, but they help the predic-
tion well with those at anemometer 1.
The predicted time series were shown in Fig. 5. The pre-

diction using the observations at the two anemometers is
better than that at anemometer 1 only in most time, espe-
cially when the wind is strong. This observation will coin-
cide with the statement of Kantz et al. [10, 11], which says
that we can predict the turbulent gusts from a time series in
a meaningful way.

8. Conclusions

We showed that predicting the wind using temporal cor-
relation is difficult due to the weak serial dependence and
nonlinearity. Therefore, instead of temporal correlation,
we proposed to predict the wind using spatial correlation.
The experimental observation of the wind illustrated that
the wind at the upstream gives supplementary information
when the wind is strong. Thus the wind was better pre-
dicted using the past observations at both the predicted
point and the upstream than when using those at the pre-
dicted point only.
Since the affirmative evidence was obtained, we are
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Table 1: Selected delays for optimal embeddings.
method selected delays

with observations at anemometer 1 x2(t), x2(t − 4), x3(t − 3), x3(t − 4), x3(t − 16)
with observations at anemometer 2 y1(t − 20), y2(t), y2(t − 1), y2(t − 6)

with observations at anemometers 1 and 2 x2(t), y2(t), y3(t − 15)

Table 2: Root mean square errors when predicting the north wind at anemometer 1 using various methods.
method prediction errors

the values 1 second before 0.3461
with observations at anemometer 1 0.3415 ± 0.0012
with observations at anemometer 2 0.4201 ± 0.0025

with observations at anemometers 1 and 2 0.2722 ± 0.0070
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Figure 5: Time series predicting 1 second ahead (top) and
its prediction errors (bottom). The blue line shows the ob-
served series, the red line corresponds to the prediction us-
ing the observations at the two anemometers, and the green
line is the prediction using the observations at anemometer
1 only.

looking forward to moving on to more practical experi-
ments.
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