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Abstract—We study the estimation of mutual in-
formation between pairs of simultaneous time series,
taking into account temporal correlations within the
time series. It is shown that an intimate relationship
exists between parametric model fitting by Maximum-
Likelihood and estimation of mutual information. As
a result it becomes possible to detect weak correla-
tions within short spatiotemporal data sets, such as
provided by the fMRI technique in neuroscience.

1. Introduction

In many fields of science multivariate time series
are obtained from spatially extended dynamical sys-
tems, e.g. in hydrodynamics, meteorology, geophysics,
biology and medicine. As a particular example we
mention neuroscience where spatiotemporal data sets
are recorded routinely through well-established modal-
ities like electroencephalography (EEG), magnetoen-
cephalography (MEG) and functional magnetic reso-
nance imaging (fMRI).

In order to investigate interactions between subsys-
tems located at different spatial positions, measures
for pairwise dependence are needed; linear correla-
tion is a well-known measure for linear dependence,
while mutual information (MI) has been introduced as
a measure for general dependence in an information-
theoretic framework [1]. For gaussian distributions
both measures are equivalent, i.e. MI is a function of
linear correlation.

In this paper the relationship between MI estimation
and parametric modelling of time series is investigated,
and a new parametric estimator of MI is derived.

2. The definition of Mutual Information revis-
ited

The definition of MI is based on the probability dis-
tributions of two random variables x and y which can
assume values out of a set of states; assume that the
number of states is finite, say S. Let the index i,
i = 1, . . . S, label these states, denote the correspond-
ing values by xi and yi and assume that joint and
marginal probability distributions p(xi, yj), p(xi) and
p(yi) for the occurrence of these states exist. Then the

mutual information I(x, y) between x and y is defined
by

I(x, y) =
S∑

i=1

S∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)

=
〈
log p(xi, yj) − log

(
p(xi)p(yj)

)〉
p(xi,yj)

,

(1)

where 〈.〉p(xi,yj) denotes the average over (i, j) with re-
spect to p(xi, yj). Note that MI is estimated from dis-
tributions, without any reference to time and dynam-
ics; the probability distributions p(xi, yj), p(xi) and
p(yi) need to be estimated from the available data, as-
suming that this represents independently drawn sam-
ples.

If the data is given as a pair of time series xt and yt,
t = 1, . . . , N , the assumption of independent sampling
will typically be invalid since most time series display
serial correlations. Consequently we have to regard xt

and yt as different random variables for each value of
t, and Eq. (1) is replaced by

I(x, y) = log p
(
(x1, y1), . . . , (xN , yN)

)
− log

(
p(x1, . . . , xN)p(y1, . . . , yN)

)
. (2)

Now all serial correlations are captured by the corre-
sponding joint distributions. Reinterpreting Eq. (2)
from the viewpoint of time series analysis, it can
be seen that mutual information can be regarded
as a difference between two terms representing log-
likelihoods, the first referring to the bivariate time
series (xt, yt), the second being the sum of the log-
likelihoods of the two univariate time series xt and yt.
Let log-likelihood be denoted by L, then Eq. (2) cor-
responds to

I(x, y) = L(x, y) −
(
L(x) + L(y)

)
. (3)

3. Expressing likelihood using predictive mod-
elling

The high-dimensional distributions in Eq. (2) will
be very difficult to estimate, therefore we propose to
whiten the data by predictive modelling, i.e. using the
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expected values as predictors and forming the residuals
(also called innovations):

εt(x|x) = xt − E(xt|xt−1, xt−2, . . .) , (4)

εt(y|y) = yt − E(yt|yt−1, yt−2, . . .) , (5)(
εt(x|x, y), εt(y|x, y)

)† =
(
xt, yt

)†−
E
(
(xt, yt)†|(xt−1, yt−1)†, (xt−2, yt−2)†, . . .

)
. (6)

According to a theorem from the theory of stochas-
tic dynamical processes (see Theorem 41 in [2]), any
continuous-time Markov process with continuous dy-
namics can be modelled such that the corresponding
innovations are I.I.D. gaussian noise. For the predic-
tive models of Eqs. (4)– (6) it can easily be shown
that

p(x1, . . . , xN) = p
(
ε1(x|x), . . . , εN(x|x)

)
, (7)

p(y1, . . . , yN) = p
(
ε1(y|y), . . . , εN(y|y)

)
, (8)

p
(
(x1, y1), . . . , (xN , yN)

)
=

p
((

ε1(x|x, y), ε1(y|x, y)
)
, . . . ,

(
εN(x|x, y), εN(y|x, y)

))
,

(9)

This fact renders it possible to replace
the unknown and intractable joint distribu-
tions p

(
(x1, y1), . . . , (xN , yN)

)
, p(x1, . . . , xN) and

p(y1, . . . , yN) in Eq. (2) by products of gaussian
distributions.

Let the corresponding log-likelihoods for x and y be
given by

L(x) = log p(x1, . . . , xN)

= log p
`

ε1(x|x), . . . , εN(x|x)
´

(10)

= −1

2

„

N log σ2
ε(x|x) +

N
X

t=1

ε2t (x|x)

σ2
ε(x|x)

+ N log(2π)

«

,

by a corresponding expression for y, and for (x, y) by

L(x, y) = log p
`

(x1, y1), . . . , (xN , yN)
´

= (11)

log p
“

`

ε1(x|x, y), ε1(y|x, y)
´

, . . . ,
`

εN(x|x, y), εN(y|x, y)
´

”

= −1

2

„

N log |Sε(x,y|x,y)| +
N

X

t=1

`

εt(x|x, y), εt(y|x, y)
´

× S−1
ε(x,y|x,y)

`

εt(x|x, y), εt(y|x, y)
´†

+ 2N log(2π)

«

.

Here σ2
ε(x|x) denotes the variance of the innovations for

the case of a predictive model for x only; and Sε(x,y|x,y)

denotes the covariance matrix of the bivariate innova-
tions for the case of a predictive model for (x, y). The
following structure is chosen for Sε(x,y|x,y):

Sε(x,y|x,y) =

(
σ2

ε(x|x,y) S12

S21 σ2
ε(y|x,y)

)
, (12)

where the off-diagonal element is given by

S12 = S21 = σε(x|x,y) σε(y|x,y) r
(
ε(x), ε(y)

)
; (13)

here r
(
ε(x), ε(y)

)
denotes the normalised coefficient of

linear correlation.

4. Estimation of Mutual Information through
whitening

If we replace in Eqs. (10), (11) and Eq. (12)
the parameters σε(x|x), σε(y|y), σε(x|x,y), σε(y|x,y)

and r
(
ε(x), ε(y)

)
by their appropriate Maximum-

Likelihood estimators and insert the results into
Eq. (3), we obtain after some transformations

I(x, y) = −1
2
N

(
log

(
1 − r2(ε(x), ε(y))

)
+

(
log σ2

ε(x|x,y) − log σ2
ε(x|x)

)
+

(
log σ2

ε(y|x,y) − log σ2
ε(y|y)

))
. (14)

Note that Eq. (2) can be regarded as the likelihood
ratio test (LRT) statistic of the null hypothesis of inde-
pendence of the time series xt and yt [3]. By Eq. (14)
possible deviations from independence are decomposed
into three components, the first describing instanta-
neous correlations between the innovations of x and y,
quantified by r

(
ε(x), ε(y)

)
, while the second and the

third describe dependence of x on the past of y and
vice versa. If knowing the past of y does not improve
predictions of x, and vice versa, the mutual informa-
tion can still be non-zero, as given by the first term
on the rhs of Eq. (14); however, since any estimates
of the mutual information obtained from actual finite
samples will follow a χ2-distribution (as it is usually
the case for any LRT statistics in the null case), it is
to be expected that even in this case there will be a
small positive bias resulting from the second and third
terms on the rhs of Eq. (14). In contrast to this, in
the non-null case the estimate of mutual information
can be expected to follow a Gaussian distribution [4].

For any particular application a suitable predictive
model needs to be formulated and fitted to the data,
and the MI estimator, Eq. (14), needs to be reformu-
lated accordingly; we will now show an example.

5. The case of linear autoregressive modelling

Assume that for a given pair of time series xt and yt

all mutual dependences can be modelled as instanta-
neous, i.e. not involving any time lags, then modelling
can be performed by two linear autoregressive (AR)

627



models

εt(x) = xt −
(

µx +
p∑

τ=1

aτ xt−τ

)

εt(y) = yt −
(

µy +
p∑

τ=1

bτ yt−τ

)
,

(15)

where the covariance matrix of the estimated innova-
tions

(
εt(x), εt(y)

)
is given by Eq. (12); in the standard

Maximum-Likelihood model estimation approach the
elements of Sε(x,y|x,y) need to be estimated by numeri-
cal optimisation. Alternatively, the pair of time series
may be modelled by

εt(x) = xt −
(

µx +
p∑

τ=1

aτ xt−τ

)

εt(y|x) = yt −
(

µy +
p∑

τ=1

bτ yt−τ + cxyxt

)
,

(16)

such that the instantaneous dependence is captured by
an additional coupling term cxyxt [5]; then the covari-
ance matrix of

(
εt(x), εt(y|x)

)
will be diagonal. The

log-likelihood of model (16) is given by

L(x, y|x) = −1
2

N∑
t=p+1

(
log

∣∣Sε(x,y|x)

∣∣
+

(
εt(x), εt(y|x)

)
S−1

ε(x,y|x)

(
εt(x), εt(y|x)

)†
+ 2 log(2π)

)
, (17)

By transforming Eq. (16) back into proper autoregres-
sive form (such that no terms depending on time t
remain on the right-hand side), the corresponding co-
variance matrix Sε(x,y|x) can be obtained:

Sε(x,y|x) =

(
σ2

ε(x) cxyσ2
ε(x)

cxyσ2
ε(x) c2

xyσ2
ε(x) + σ2

ε(y|x)

)
. (18)

After some further transformations we arrive at

L(x, y|x) = −1
2
(N − p)(log σ2

ε(x) + log σ2
ε(y|x))

− (N − p)
(
1 + log(2π)

)
(19)

+ (N − p)
2cxy σ2

ε(x),ε(y|x) − c2
xy σ2

ε(x)

2σ2
ε(y|x)

,

where we have defined σ2
ε(x),ε(y|x) = E

(
εt(x)εt(y|x)

)
.

Note that the log-likelihood of the uncoupled model
(as in Eq. (15), but without any dependence between
xt and yt, i.e. with diagonal Sε(x,y|x,y)) is given by

L(x, y) = −1
2
(N − p)(log σ2

ε(x) + log σ2
ε(y))

− (N − p)
(
1 + log(2π)

)
. (20)

Now from Eqs. (2) it follows that MI can also be
expressed as

I(x, y) = log
(
p(x1, . . . , xN |y1, . . . , yN) p(y1, . . . , yN)

)
− log

(
p(x1, . . . , xN) p(y1, . . . , yN)

)
, (21)

Then from Eqs. (19, (20) and (21) the following esti-
mator of MI is obtained:

I(x, y) = (N − p)
2cxy σ2

ε(x),ε(y|x) − c2
xy σ2

ε(x)

2σ2
ε(y|x)

. (22)

6. A numerical example

As an example for the application of the ap-
proach outlined so far we consider a chain of 64
coupled stochastic nonlinear oscillators with nearest-
neighbours coupling and periodic boundary condi-
tions, each of them being driven by independent white
Gaussian noise; this system is an example of a one-
dimensional coupled map lattice [6].

The state of the vth oscillator (v = 1 . . . 64) is given
by

y
(v)
t = tanh

( p∑
τ=1

a(v)
τ y

(v)
t−τ +

∑
v±1

b
(v,v±1)
1 y

(v±1)
t−1

)
+η

(v)
t ,

(23)
where the first sum describes a local autoregressive
(AR) dynamics and the second sum extends over the
nearest neighbours of each oscillator; in a chain with
periodic boundary conditions there will be two nearest
neighbours. The hyperbolic tangens provides a nonlin-
ear element and prevents the dynamics from diverg-
ing. Each oscillator is driven by an individual noise
term η

(v)
t ; however, two non-neighbouring oscillators

(with numbers 14 and 41) share a common driving
noise term, thereby representing a situation where two
different parts of a system are intrinsically connected.
Further details on the definition of this simulation will
be published in [7].

For an AR model order of p = 2 a time series of
length N = 1024 points is generated, and measure-
ments of the state of each oscillator are simulated by
recording noisy data according to

x
(v)
t = y

(v)
t + n

(v)
t , (24)

where n
(v)
t denotes a small Gaussian noise component.

The mutual information matrix for the original data
(estimated by a nonparametric estimator, based on
histograms [4], left figure) does not reveal the intrinsic
connection between these two oscillators, but shows
a diffuse pattern of pair dependences, mostly reflect-
ing correlations between neighbours. The same ma-
trix for the innovations instead of the original data
(middle figure) shows clearly the connection, since all
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Figure: Histogram estimate of mutual information matrix for simulated data (left) and innovations (middle);
parametric estimate for innovations (right). Horizontal and vertical axes represent the chain of oscillators
(periodic boundary conditions); entries on the diagonals have been omitted.

other correlations have been removed by the whiten-
ing transformation (which in this simulation contains
also explicit terms for the instantaneous and delayed
interactions between neighbours, details can be found
in [7]). The parametric estimate of the mutual in-
formation matrix (right figure) according to Eq. (22)
reproduces this result with even less spurious depen-
dences between other pairs of oscillators.

We are currently applying this methodology to fMRI
data sets recorded during cognition experiments, with
the aim of investigating, within a dynamical frame-
work, the connectivity structure of human brain.
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