
Abstract - This paper studies the identification of a block
structured nonlinear Wiener-Hammerstein system that is
captured in the feedforward or the feedback path of a feed-
back loop. Nonparametric initial estimates are generated
for the three dynamic blocks, modelled by their frequency
response function, and the static nonlinear system. The
method can be applied to input/output data resulting from
random or periodic excitations.  

1.  Introduction

Identification of nonlinear dynamic systems (NL) is a
very difficult problem because no universal valid model
structure is available as it is for linear systems. For that
reason block structured models that describe the NL sys-
tem as a connection of linear dynamic and static nonlinear
blocks [1], [6], [7] are very popular. Initially the attention
was focused on Wiener and Hammerstein systems, fol-
lowed more recently by Wiener-Hammerstein and Ham-
merstein-Wiener systems. All these systems are open loop
systems, there is no nonlinear feedback present. Such sys-
tems can not describe many phenomena that are observed
in practice: a shifting resonance frequency or a changing
damping as a function of the input amplitude of the exci-
tation. To include also these phenomena, a feedback
around the nonlinearity should be added. This leads to the
system as shown in Fig.1.  In this figure  are
linear dynamic systems and  is a static nonlinear sys-
tem. The aim of this paper is to provide nonparametric in-
itial estimates  (the frequency response
functions) and for  (static nonlinearity) starting from a
set of measured input and output data ,

. 

2.  Structure selection: an indistinguishability 
problem

 A detailed study reveals that it is impossible to distin-
guish [5]  from input/output data only between the two
structures in Fig.1. It is even impossible to identify : an
arbitrary part of the dynamics of the feedback branch can
be shifted to the feedforward branch by changing at the

same time the static nonlinear characteristic .  Table 1
gives the relations between the different structures and
their linear dynamic and static nonlinear blocks. From

identification point of view, it is impossible to make a
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Table 1:Equivalencies between the structures in Fig.1
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 Fig.1: Examples of a block structured feedback model.
Top: nonlinearity in the feedforward path; bottom:
nonlinearity in the feedback path.
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physical interpretation from input/output measurements
only, additional assumptions or prior information are
needed.

In this paper we select without any loss of generality the
bottom structure with the static nonlinearity in the feed-
back as default block structure.

3.  Nonparametric identification of the dynamics of 
the feedforward and the feedback path

The first step of the initialization procedure is to generate
initial estimates for the dynamics  (FF) and

 (FB). In a second step  will be identi-
fied together with an initial estimate for .

It is shown that a wide class of nonlinear systems can be
approximated by its best linear approximation plus a non-
linear noise source [2], [9], [10] if the system is driven by
Gaussian noise. For a Wiener-Hammerstein system, sym-
bolically denoted as

 , (1)

the best linear approximation is the product

, with  a constant. (2)

The constant  depends on the power spectrum of the in-
put. This result will be used here as an approximation to
the FB-branch of the closed loop system. The reader
should notice that even if the reference signal  is
Gaussian distributed, it is not guaranteed to be the case for
the driving signal  of the FB. However, to generate in-
itial estimates, all approximations are allowed as long as
it results in reasonable estimates. Applying (2) to the feed-
back branch leads in this case to:

. (3)

Measure the best linear approximation  for dif-
ferent amplitudes of the input, where  is the frequency
index , and  is the amplitude index. The inverted
measurements are used as entries for the matrix :

, (4)

where it should be noted that

. (5)

The kernel idea is to note that  is a rank 2 matrix, and
an SVD can be used to retrieve the basis vectors. After

proper scaling of the right singular vectors using a linear
regression, the following estimates are found for the dy-
namics   of the feedforward path and  of the feed-
back path:

. (6)

with  and  arbitrary parameters. This was shown for
 in the indistinguishibiltiy study (Section 2., Table 1).

A change of  leads to an appropriate variation of the
scaling of  such that the total gain of the feedback path
remains constant.

4.  Separating the dynamics and the static 
nonlinearity in the nonlinear branch

Once initial estimates are available for the FF and FB dy-
namics, it is possible to calculate the initial estimates

 from :

, and . (7)

Next a nonparametric initial estimate for the Wiener-
Hammerstein FB-branch can be generated [11]. A de-
tailed discussion of this method is out of the scope of this
paper.

5.  Experimental verification

In this paper the procedure that is explained in Section 3
will be first illustrated on a known electrical circuit. Next
a mechanical structure with a strong nonlinear behaviour
will be analysed.

5.1 The silverbox example

The Brussels silverbox is an electrical circuit that basical-
ly consists of linear second order system in the FF, and a
static nonlinear feedback:

 , , . (8)

Of course the actual realized circuit is not in perfect agree-
ment with (8), for example, we noticed in the measure-
ments also the presence of a small quadratic term . A
detailed study of this nonlinear system can be found in [8].
The system is excited with a Gaussian noise sequence
with a slowly increasing amplitude and measured in
40 000 points. This record is split in 4 successive sub-
records and each of these is used to identify the best linear
approximation ,  (Fig.2). In order to
smooth the resulting FRF, a parametric 2nd order model is
identified  for each of the subrecords and this
model is used to setup the matrix  in (4). The FRF of
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 is shown in Fig.3. For increasing ampli-

tudes of the excitation, the resonance frequency shifts
to the right, while at the same time the amplitude
drops. 

Next the estimates  are estimated (putting the
nonlinearity in the feedback) and shown in Fig.4. As

could be expected from the physical insight,  is
quite flat. On the other hand it is impossible to recog-
nize a 2nd order system in . This is due to the in-
distinguishability problems that are explained before.
Any physical interpretation of the FF dynamics is lost,
even if we would know that the nonlinearity is in the
FB.

Next the optimal scaling factor  was estimated in
least squares sense from  and the original
models  were reconstructed using (6). A
very good match was found with a relative error below
- 50 dB. Notice that the complex FRF in Fig.3 changes
with about 20% (relative variation -15 dB). This
proofs that the model (6) can be used as a valid ap-
proximation to describe the amplitude dependent line-
ar approximation in this case.

Eventually, an intial estimate of the static nonlinearity
 is estimated using the nonparametric Wien-

er-Hammerstein initialization method [11]. In Fig.5
the nonparametric scatter plot  is shown together

with the median values (determined in 30 intervals).
The linear dependency was taken out in order to show
clearly the nonlinear behaviour. Although the cloud
looks quite scattered, a more detailed analysis shows
that most points are close to the median values which
proves that a good initial model is obtained.

5.2 The halfcar test setup

The second experiment is made on the Leuven halfcar
test setup (see http://www.mech.kuleuven.be/lnvr/half-
car/). This is a mechanical setup that is a scale model
of the rear axis of a car suspension. The system is driv-
en by two shakers (one for each wheel). In this test,
one of the two shakers is kept at a fixed position, the
other one is used to excite the system at 4 different am-
plitudes ( ) with a multisine.
This is a periodic signal with a user imposed spectrum.
A similar analysis as in the previous section is made.
In this case the resonance frequency is not shifting but
the damping decreases significantly as can be seen in
Fig.6. Again  is decomposed in a FF and FB rep-

resentation and next the optimal scaling factors  are
determined. The resulting models  are
compared to the original models . As can
be seen, there is again a (very) good match. Only for
the smallest amplitude the error is larger. This is due
to the fact that the damper in the system has a strong
nonlinear behaviour around the origin. It becomes
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 Fig.2: Input signal split in four successive sub-
records with growing amplitude.
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 Fig.5: Nonparametric estimate of the static
nonlinearity. Black dots: median.
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more linear with a lower equivalent damping for larger
amplitudes. 

Next we tried to model the FB-branch as a Wiener-Ham-
merstein system, but this failed. Seemingly the nonlinear
feedback branch has a much more complex structure due
to the presence of the damper that can not be captured by
a Wiener-Hammerstein model. This suggest that the pro-
posed procedure is also valid for a more general class of
nonlinearities than the Wiener-Hammerstein systems.
Possible generalizations would be the NFIR models as de-
scribed by Enqvist and Ljung [4], or systems where the
siso static nonlinearity is replaced by a static nonlinear re-
lation that depends on more than one input, for example
position and acceleration as was suggested in [3].

6.  Conclusion

In this paper the identification of block structured nonlin-
ear feedback systems is studied. First it is shown that it is
impossible to retrieve from input-output data only the in-
ternal structure. An infinite number of equivalent systems
can be proposed that all explain equally well the input-
output relations. Next a method is proposed to identify
nonparametric models for the linear dynamic and static
nonlinear blocks of the structure. These can be used in a
second step to initialise a nonparametric optimization pro-
cedure. Finally the method is illustrated on two experi-
ments. It is shown that the method allows to describe the
variations of the best linear approximation using a single
parameter that is set by the input amplitude. It also turned
out that even in the case that a Wiener-Hammerstein non-
linear branch is not rich enough to give a full description
of the system, it is still possible to use the method to esti-
mate the linear dynamics of the FF and FB branch.
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 Fig.7: Error  for the four
experiments (amplitude in db versus freq. in Hz).
Top black and gray line: measurement and model.
Bottom line: the error.
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