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Abstract—Linear approximations of nonlinear systemssults concerning static nonlinearities can be found in [1]
can be obtained by fitting a linear model to data from and [11]. More recent results about LTI approximations
nonlinear system, for example, using the prediction-erran a stochastic framework can be found in [12], [13], [14]
method. In many situations, the type of linear modeand [15]. LTI approximations of nonlinear systems have
and the model orders are selected after estimating sevebalen studied in a deterministic framework in [8], [9] and
models and evaluating them using various validation tecfi10]. Some results using the same framework as here can
nigues. Two commonly used validation methods for lineae found in [7], [2] and [3].
models are spectral and residual analysis. Unfortunately,
thesg methods will nlot alvyays work if th_e true sy_stt_em IS Output Error LTI-SOEs
nonlinear. However, if the input can be viewed as if it has
been generated by filtering white noise through a minimum The class of nonlinear systems studied in this paper is
phase filter, spectral and residual analysis can be used figfined by the following assumptions on the input and out-
validation of linear models of nonlinear systems. Furtherput signals.
more, it can be shown that the input minimum phase prop- .
erty guarantees that a certain optimality result will holdAssumptlon Al. Assume that
Here, the benefits of using minimum phase instead of non{i) The inputu(t) and outputy(t) are real-valued station-
minimum phase filters for input design will be shown both  ary stochastic processes withuf) = E(y(t)) = 0.

theoretically and in numerical experiments. (i) There existk > 0 anda, 0 < a < 1 such that

the second order momeni(r) = E((t)u(t — 7)),

1. Introduction Ru(r) = E(/(®u(t-7)) andR(r) = E¢(Oy(t-)) sat-
- I e i
In this paper, we will discuss some properties of linear :czfry;ﬁ‘;(?g Ka™, IRu()l < KaandiRy(r)] < K

model estimates obtained by system identification using
input and output data from nonlinear systems. The sysgiii) The z-spectrumd,(2) (i.e., the z-transform oR,(7))
tem identification method that will be studied here is the  has a canonical spectral factorization
prediction-error method6].

Consider a parameterized stable linear time-invariant Dy(2) = L@ruL(z Y, 1)

(LT1) output error (OE) model whereL(2) and J/L(2) are causal transfer functions

y(t) = G(g, H)u(t) + e(t), that ar_e analylti.c iNze C: |74 > 1}, L(+x) = 1
andr is a positive constant.
wheref is a parameter vector and wherdenotes the shift
operatorgu(t) = u(t + 1). The signalsi(t), y(t) ande(t) are
the system input, output and noise, respectively.

It can be shown [5] that the prediction-error parameteDefinition 2.1. Consider a nonlinear system with inpu(t)
estimate under rather general conditions will converge tand outputy(t) such that Assumption Al is fulfilled. The
the parameters that minimizeveean-square error criterion Output Error LTI Second Order Equivale(@E-LTI-SOE)
E((y(t) — G(g,8)u(t))?). Here, EK) denotes the expected of this system is the stable and causal LTI mo@gbe(q)
value of the random valug. This result motivates why it that minimizes the mean-square errofyi) — G(q)u(t))?),
is interesting to study the mean-square error optimal LTile.,
approximation of a general, possibly nonlinear, system. Go.oe(q) = arg minE((y(t) — G(q)u(t))?),

LTI approximations of nonlinear systems have been Geg
studied for a long time. A couple of useful, classical rewhereG denotes the set of all stable and causal LTI models.

The type of LTI approximations studied here is described
in the following definition.
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The following theorem is a direct consequence of classiSince the serie®yg(z) contains no positive powers af
Wiener filter theory. taking the causal part does not remove anything. Hence,
Theorem 2.1 we have[d)ye(z)]causalz ®ye(2) and we have shown (3).0

Consider a nonlinear system with inputuand output ) OE-LTI-SOEs that can be written as the ratio between
Go,ok of this system is The perhaps most obvious property that holds in this case

1 [Dw@ concerns the residuaig(t). In the following lemma it will
Gooe(? = - (@ | LD , (2)  be shown that for such an OE-LTI-SOE, the residuals will
. causal be uncorrelated withll input signal components.
where[. . .]causasdenotes taking the causal part and where
L(2) is the canonical spectral factor dfy(2) from (1). Lemma3.l o
Consider a nonlinear system with inputjuand output Yt)
Proof: See, for example, [6] or [4]. O such that Assumption Al is fulfilled. Assume that the OE-

LTI-SOE can be written as

3. Minimum Phase Input Filters Oy(2)

A common way to generate a signesuch that its spec- Gooe(? ®y(2) )
tral density is equal to some predefined function is to filter d et
white noisee through an LTI filterL(2). If uis going to ana’le _
be used as input to an LTI system in a linear identification 70(t) = Y(t) ~ Gooe(Qut) ©)
experiment, such a filter can be designed without consid-hen it follows that
ering its phase. However, if the signais to be used for
an LTI approximation of a nonlinear system, the phase of ~ Pnu(2 = @yu(?) — Gooe(2)Pu(2) = 0, (6a)
the input filter is crucial for the behavior of this approxi- D,,(2) = Dy(2) — Gooe(2Pu(2Gooe( ). (6b)

mation. A fundamental property of OE-LTI-SOEs for min-
imum phase input filters is shown in the following theoremProof: The expression fo®,,.(2) in (6a) follows directly
from (4) and (5). Furthermore, (4) and (5) also give

Theorem 3.1

Consider a causal nonlinear system with inp(t) and out- . (2) = D2 — G AD.(2) — Do DG 1

put y(t) such that Assumption Al is fulfilled. Assume that w(d 12) = Gooe(@)Puy )_1 n(2)Caoe(z”)

the input signal has been generated by filtering white, pos- + Go.oe(2)Pu(2)Go,0e(7 )

sibly non-Gaussian, noisgtg through a minimum phase = Dy(2) — Gooe(DPu(DGooe(z )

filter Lm(2). Assume also that any other external signals

that affect the output are independent of u. Then the OEand hence (6b) has been shown. o

LTI-SOEis Intuitively, it seems that it should always be a good idea
Gooe() = Oy(2) _ _ Dyel2) . (3) 1o use input signals for which the OE-LTI-SOE is equal to

' Dy(2) Ln(dRe(0) @y (2)/Dy(2) since it can be shown that this ratio defines al-

Proof: The canonical spectral factorization d@f,(2) is Ways the mean-square error optimal noncausal LTI model,
L) = =@ r, = I,(0)Re(0). Using (2) from Theo- i.e., the noncausal LTI-SOE. As a matter of fact, input sig-

TOR

rem 2.1, this gives nals for which the OE-LTI-SOE of a nonlinear system can
be written as500e(2) = Pyu(2)/Pu(2) exhibit the following
Gooe(?) = Im(0) ['m(O)CDyu(Z)] optimality property.
’ |m(0)2Re(0)Lm(Z) Lm(zl_l) causal Theorem 32
— 1 [(DYE(Z)L”‘(T )] Consider a nonlinear system with input(t) and output
ROLm(@ | Lmz?Y) |causa y1(t) such that Assumption A1l is fulfilled. Leg&:1(2) de-
3 1 ® note the OE-LTI-SOE of the nonlinear system with respect
" Re(0)Lm(2) [ ye(z)]causar to u; and assume that it can be written as
By the assumptions, the nonlinear system is causaluand Dy, (2)
is independent of all other external signals thiieet the Gooe1(2) = m

output. This, together with the fact thais a white noise
process, imply thay(t) is independent o&(t — 7) for all  Furthermore, letyo1(t) = yi(t) — Goog1(Q)ua(t).

7 < 0. HenceRy(r) =0 forallr < 0 and Consider also another input signaj @) to the same non-
. linear system. Assume that this signal generates the out-
Dye(2) = Z Re(n)Z". put y(t) and that(ux(t), y2(t)) satisfy Assumpupn Al. Let
perd Go.0e2(2) denote the OE-LTI-SOE of the nonlinear system
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with respect to pand letngo(t) = ya(t) — Gooe2(q)u2(t). quite diferent from the frequency response of the OE-

Assume that LTI-SOE and is thus in general useless for validation pur-
, , poses. Only when the OE-LTI-SOE can be written as
D, (€°) = 0, (€9), Yw e [-m,n], Gooe(2) = yu(2)/®y(2), spectral analysis can be used as

Dy, (€9)] = Dy, (€“), Yo € [, 7], a validation method.

Ryz (O) = Ryl(o)

Then, the model residual variance for the OE-LTI-SOE

corresponding to g cannot be smaller than it is for the consider the simple static nonlinear system
one corresponding tojui.e.,

Example 3.1 |

Ryo2(0) = Ry, (0). @) y(®) = u(®® 9)

Proof: It can be shown [2] that for any OE-LTI-SOE we and the two input signals
have

1 1
S W) = ) + 5o - 1), ual) = 5e) + et - 1),
Ru©O=RO)- 5 [ Gooele)Poue)do. ®) 2 o2

) . ) wheree(t) is a sequence of independent random variables
go(rz)any input signal, the noncausal LTI-SOE is alway$yith uniform distribution over the intervaH, 1].
By - |tis easy to verify that (8) holds also for the non-  gyrajghtforward calculations show that the OE-LTI-

causal LTI-SOE ifGooe(€”) is replaced bygt%?. As ~SOEs of this system are

the stable and causal LTI systems are a subset of the stable
and noncausal, it follows that the OE-LTI-SOE will always 0.85+ 0575t 0.925+ 0.4251
have a minimum mean-square error that is greater than or 1+05z1 1+05z1 °
equal to the minimum mean-square error that is obtained
for the noncausal LTI-SOE. Hence, respectively. Furthermore, the two inputs and the corre-
) sponding outputs satisfy the conditions in Theorem 3.2.
1 (7| Dy,u,(€9) i Two data sets with 10000 noise-free input and output
Riez(0) 2 Ry.(0) - 2n j:,, Dy, (€«) ®u,(6%)des measurements have been generated. The first of these data
1 (7| @y (E9) 2 _ sets was generated with a realization of the minimum phase
=R, (0)- — f i J @y, (€“)dw filtered signaluy(t) as input while the second data set was
2t J x| Quy(€¥) generated with a realization of the non-minimum phase fil-
=Ry, (0) tered signali(t) as input.

Nonparametric frequency response estimates have been
O computed from these data sets using spectral analysis with
a Hamming window of lag size 30. These estimates are
A common way to validate an estimated model of aghown in Figure 1 together with the frequency responses of
open-loop LTI system is to compare the frequency respongge corresponding OE-LTI-SOEs.
of the model with a nonparametric frequency response es-|, Figure 1, it can be seen that there is a close match

timate obtained by spectral analysis. If these frequenQyayyeen the OE-LTI-SOE and the nonparametric frequency
responses are S|mllar t.hIS |nd'|cates that the order pf ”?Esponse estimate when the input has been generated by a
parametric model is sticiently high and that the numerical inimum phase filter. However, when the input has been

computation_o_f the estimate has been success_ful. In Lj“@%nerated by a non-minimum phase filter, the OE-LTI-SOE
[6, Sec. 6.4] itis shown that the spectral analysis frequengg quite diferent from the nonparametric estimate.
response estimatey (€“°) based orN measurements can |

be written

Dy, (9

sinceGooe1(2 = 5,75 -

DN (60)

Gn(€“) = DN (o)

The conclusion that can be drawn from the previous
example is that for LTI approximations of nonlinear sys-
where(i)L'}‘(e“”O) andﬁ){,“u(é‘”l’) are estimates of the spectraltems, spectral analysis can be used as a validation method
and cross-spectral densities that can be written as smbothenly when an input signal that guarantees Babe(2) =
periodograms. @y (2)/Dy(2) has been used. An additional property of such

If an LTI model is estimated for an open-loop nonlin-input signals is that they make the result of another valida-
ear system, it might be tempting to use spectral analyion method, residual analysis, easier to interpret sihee t
sis as a validation method also in this case. Howeveresiduals then by (6a) will be uncorrelated with all input
the spectral analysis frequency response estimate candmmponents.
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(a) The OE-LTI-SOE (dashed) and the spectral analysis
estimate (solid) for an input generated by a minimum

phase filter.
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(b) The OE-LTI-SOE (dashed) and the spectral anal-
ysis estimate (solid) for an input generated by a non-

minimum phase filter.
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Figure 1: A nonparametric frequency response estimate
will be a good approximation of the OE-LTI-SOE only

whenGooe(2) = ®yu(2)/Pu(2).

4. Conclusions

[12]

In this paper, it has been shown that it is beneficial t¢13]
use an input with the minimum phase property when ap-
proximating a nonlinear system with an LTI model. With
such an input, spectral and residual analysis can be used as

validation methods like for LTI systems.
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