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Abstract—Linear approximations of nonlinear systems
can be obtained by fitting a linear model to data from a
nonlinear system, for example, using the prediction-error
method. In many situations, the type of linear model
and the model orders are selected after estimating several
models and evaluating them using various validation tech-
niques. Two commonly used validation methods for linear
models are spectral and residual analysis. Unfortunately,
these methods will not always work if the true system is
nonlinear. However, if the input can be viewed as if it has
been generated by filtering white noise through a minimum
phase filter, spectral and residual analysis can be used for
validation of linear models of nonlinear systems. Further-
more, it can be shown that the input minimum phase prop-
erty guarantees that a certain optimality result will hold.
Here, the benefits of using minimum phase instead of non-
minimum phase filters for input design will be shown both
theoretically and in numerical experiments.

1. Introduction

In this paper, we will discuss some properties of linear
model estimates obtained by system identification using
input and output data from nonlinear systems. The sys-
tem identification method that will be studied here is the
prediction-error method[6].

Consider a parameterized stable linear time-invariant
(LTI) output error (OE) model

y(t) = G(q, θ)u(t) + e(t),

whereθ is a parameter vector and whereq denotes the shift
operator,qu(t) = u(t + 1). The signalsu(t), y(t) ande(t) are
the system input, output and noise, respectively.

It can be shown [5] that the prediction-error parameter
estimate under rather general conditions will converge to
the parameters that minimize amean-square error criterion
E((y(t) − G(q, θ)u(t))2). Here, E(x) denotes the expected
value of the random valuex. This result motivates why it
is interesting to study the mean-square error optimal LTI
approximation of a general, possibly nonlinear, system.

LTI approximations of nonlinear systems have been
studied for a long time. A couple of useful, classical re-

sults concerning static nonlinearities can be found in [1]
and [11]. More recent results about LTI approximations
in a stochastic framework can be found in [12], [13], [14]
and [15]. LTI approximations of nonlinear systems have
been studied in a deterministic framework in [8], [9] and
[10]. Some results using the same framework as here can
be found in [7], [2] and [3].

2. Output Error LTI-SOEs

The class of nonlinear systems studied in this paper is
defined by the following assumptions on the input and out-
put signals.

Assumption A1. Assume that

(i) The inputu(t) and outputy(t) are real-valued station-
ary stochastic processes with E(u(t)) = E(y(t)) = 0.

(ii) There existK > 0 andα, 0 < α < 1 such that
the second order momentsRu(τ) = E(u(t)u(t − τ)),
Ryu(τ) = E(y(t)u(t−τ)) andRy(τ) = E(y(t)y(t−τ)) sat-
isfy |Ru(τ)| < Kα|τ|, |Ryu(τ)| < Kα|τ| and|Ry(τ)| < Kα|τ|

for all τ ∈ Z.

(iii) The z-spectrumΦu(z) (i.e., the z-transform ofRu(τ))
has a canonical spectral factorization

Φu(z) = L(z)ruL(z−1), (1)

where L(z) and 1/L(z) are causal transfer functions
that are analytic in{z ∈ C : |z| ≥ 1}, L(+∞) = 1
andru is a positive constant.

The type of LTI approximations studied here is described
in the following definition.

Definition 2.1. Consider a nonlinear system with inputu(t)
and outputy(t) such that Assumption A1 is fulfilled. The
Output Error LTI Second Order Equivalent(OE-LTI-SOE)
of this system is the stable and causal LTI modelG0,OE(q)
that minimizes the mean-square error E((y(t) −G(q)u(t))2),
i.e.,

G0,OE(q) = arg min
G∈G

E((y(t) −G(q)u(t))2),

whereG denotes the set of all stable and causal LTI models.
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The following theorem is a direct consequence of classic
Wiener filter theory.

Theorem 2.1
Consider a nonlinear system with input u(t) and output y(t)
such that Assumption A1 is fulfilled. Then the OE-LTI-SOE
G0,OE of this system is

G0,OE(z) =
1

ruL(z)

[

Φyu(z)

L(z−1)

]

causal

, (2)

where[. . .]causaldenotes taking the causal part and where
L(z) is the canonical spectral factor ofΦu(z) from (1).

Proof: See, for example, [6] or [4]. �

3. Minimum Phase Input Filters

A common way to generate a signalu such that its spec-
tral density is equal to some predefined function is to filter
white noisee through an LTI filterL(z). If u is going to
be used as input to an LTI system in a linear identification
experiment, such a filter can be designed without consid-
ering its phase. However, if the signalu is to be used for
an LTI approximation of a nonlinear system, the phase of
the input filter is crucial for the behavior of this approxi-
mation. A fundamental property of OE-LTI-SOEs for min-
imum phase input filters is shown in the following theorem.

Theorem 3.1
Consider a causal nonlinear system with input u(t) and out-
put y(t) such that Assumption A1 is fulfilled. Assume that
the input signal has been generated by filtering white, pos-
sibly non-Gaussian, noise e(t) through a minimum phase
filter Lm(z). Assume also that any other external signals
that affect the output are independent of u. Then the OE-
LTI-SOE is

G0,OE(z) =
Φyu(z)

Φu(z)
=
Φye(z)

Lm(z)Re(0)
. (3)

Proof: The canonical spectral factorization ofΦu(z) is
L(z) = Lm(z)

lm(0) , ru = lm(0)2Re(0). Using (2) from Theo-
rem 2.1, this gives

G0,OE(z) =
lm(0)

lm(0)2Re(0)Lm(z)

[

lm(0)Φyu(z)

Lm(z−1)

]

causal

=
1

Re(0)Lm(z)

[

Φye(z)Lm(z−1)

Lm(z−1)

]

causal

=
1

Re(0)Lm(z)

[

Φye(z)
]

causal
.

By the assumptions, the nonlinear system is causal andu
is independent of all other external signals that affect the
output. This, together with the fact thate is a white noise
process, imply thaty(t) is independent ofe(t − τ) for all
τ < 0. Hence,Rye(τ) = 0 for all τ < 0 and

Φye(z) =
∞
∑

τ=0

Rye(τ)z
−τ.

Since the seriesΦye(z) contains no positive powers ofz,
taking the causal part does not remove anything. Hence,
we have

[

Φye(z)
]

causal
= Φye(z) and we have shown (3).�

OE-LTI-SOEs that can be written as the ratio between
Φyu(z) andΦu(z) exhibit a couple of interesting properties.
The perhaps most obvious property that holds in this case
concerns the residualsη0(t). In the following lemma it will
be shown that for such an OE-LTI-SOE, the residuals will
be uncorrelated withall input signal components.

Lemma 3.1
Consider a nonlinear system with input u(t) and output y(t)
such that Assumption A1 is fulfilled. Assume that the OE-
LTI-SOE can be written as

G0,OE(z) =
Φyu(z)

Φu(z)
(4)

and let
η0(t) = y(t) −G0,OE(q)u(t). (5)

Then it follows that

Φη0u(z) = Φyu(z) −G0,OE(z)Φu(z) = 0, (6a)

Φη0(z) = Φy(z) −G0,OE(z)Φu(z)G0,OE(z−1). (6b)

Proof: The expression forΦη0u(z) in (6a) follows directly
from (4) and (5). Furthermore, (4) and (5) also give

Φη0(z) = Φy(z) −G0,OE(z)Φuy(z) − Φyu(z)G0,OE(z−1)

+G0,OE(z)Φu(z)G0,OE(z−1)

= Φy(z) −G0,OE(z)Φu(z)G0,OE(z−1)

and hence (6b) has been shown. �

Intuitively, it seems that it should always be a good idea
to use input signals for which the OE-LTI-SOE is equal to
Φyu(z)/Φu(z) since it can be shown that this ratio defines al-
ways the mean-square error optimal noncausal LTI model,
i.e., the noncausal LTI-SOE. As a matter of fact, input sig-
nals for which the OE-LTI-SOE of a nonlinear system can
be written asG0,OE(z) = Φyu(z)/Φu(z) exhibit the following
optimality property.

Theorem 3.2
Consider a nonlinear system with input u1(t) and output
y1(t) such that Assumption A1 is fulfilled. Let G0,OE,1(z) de-
note the OE-LTI-SOE of the nonlinear system with respect
to u1 and assume that it can be written as

G0,OE,1(z) =
Φy1u1(z)

Φu1(z)
.

Furthermore, letη0,1(t) = y1(t) −G0,OE,1(q)u1(t).
Consider also another input signal u2(t) to the same non-

linear system. Assume that this signal generates the out-
put y2(t) and that(u2(t), y2(t)) satisfy Assumption A1. Let
G0,OE,2(z) denote the OE-LTI-SOE of the nonlinear system
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with respect to u2 and letη0,2(t) = y2(t) − G0,OE,2(q)u2(t).
Assume that

Φu2(e
iω) = Φu1(e

iω), ∀ω ∈ [−π, π],

|Φy2u2(e
iω)| = |Φy1u1(e

iω)|, ∀ω ∈ [−π, π],

Ry2(0) = Ry1(0).

Then, the model residual variance for the OE-LTI-SOE
corresponding to u2 cannot be smaller than it is for the
one corresponding to u1, i.e.,

Rη0,2(0) ≥ Rη0,1(0). (7)

Proof: It can be shown [2] that for any OE-LTI-SOE we
have

Rη0(0) = Ry(0)−
1
2π

∫ π

−π

|G0,OE(eiω)|2Φu(eiω)dω. (8)

For any input signal, the noncausal LTI-SOE is always
Φyu(z)
Φu(z) . It is easy to verify that (8) holds also for the non-

causal LTI-SOE ifG0,OE(eiω) is replaced byΦyu(eiω)
Φu(eiω) . As

the stable and causal LTI systems are a subset of the stable
and noncausal, it follows that the OE-LTI-SOE will always
have a minimum mean-square error that is greater than or
equal to the minimum mean-square error that is obtained
for the noncausal LTI-SOE. Hence,

Rη0,2(0) ≥ Ry2(0)−
1
2π

∫ π

−π

∣

∣

∣

∣

∣

∣

Φy2u2(e
iω)

Φu2(eiω)

∣

∣

∣

∣

∣

∣

2

Φu2(e
iω)dω

= Ry1(0)−
1
2π

∫ π

−π

∣

∣

∣

∣

∣

∣

Φy1u1(e
iω)

Φu1(eiω)

∣

∣

∣

∣

∣

∣

2

Φu1(e
iω)dω

= Rη0,1(0)

sinceG0,OE,1(z) =
Φy1u1 (z)
Φu1 (z) . �

A common way to validate an estimated model of an
open-loop LTI system is to compare the frequency response
of the model with a nonparametric frequency response es-
timate obtained by spectral analysis. If these frequency
responses are similar this indicates that the order of the
parametric model is sufficiently high and that the numerical
computation of the estimate has been successful. In Ljung
[6, Sec. 6.4] it is shown that the spectral analysis frequency
response estimatêGN(eiω0) based onN measurements can
be written

ĜN(eiω0) =
Φ̂

N
yu(e

iω0)

Φ̂
N
u (eiω0)

,

whereΦ̂N
u (eiω0) andΦ̂N

yu(e
iω0) are estimates of the spectral

and cross-spectral densities that can be written as smoothed
periodograms.

If an LTI model is estimated for an open-loop nonlin-
ear system, it might be tempting to use spectral analy-
sis as a validation method also in this case. However,
the spectral analysis frequency response estimate can be

quite different from the frequency response of the OE-
LTI-SOE and is thus in general useless for validation pur-
poses. Only when the OE-LTI-SOE can be written as
G0,OE(z) = Φyu(z)/Φu(z), spectral analysis can be used as
a validation method.

Example 3.1

Consider the simple static nonlinear system

y(t) = u(t)3 (9)

and the two input signals

u1(t) = e(t) +
1
2

e(t − 1), u2(t) =
1
2

e(t) + e(t − 1),

wheree(t) is a sequence of independent random variables
with uniform distribution over the interval [−1,1].

Straightforward calculations show that the OE-LTI-
SOEs of this system are

0.85+ 0.575z−1

1+ 0.5z−1
and

0.925+ 0.425z−1

1+ 0.5z−1
,

respectively. Furthermore, the two inputs and the corre-
sponding outputs satisfy the conditions in Theorem 3.2.

Two data sets with 10000 noise-free input and output
measurements have been generated. The first of these data
sets was generated with a realization of the minimum phase
filtered signalu1(t) as input while the second data set was
generated with a realization of the non-minimum phase fil-
tered signalu2(t) as input.

Nonparametric frequency response estimates have been
computed from these data sets using spectral analysis with
a Hamming window of lag size 30. These estimates are
shown in Figure 1 together with the frequency responses of
the corresponding OE-LTI-SOEs.

In Figure 1, it can be seen that there is a close match
between the OE-LTI-SOE and the nonparametric frequency
response estimate when the input has been generated by a
minimum phase filter. However, when the input has been
generated by a non-minimum phase filter, the OE-LTI-SOE
is quite different from the nonparametric estimate.

The conclusion that can be drawn from the previous
example is that for LTI approximations of nonlinear sys-
tems, spectral analysis can be used as a validation method
only when an input signal that guarantees thatG0,OE(z) =
Φyu(z)/Φu(z) has been used. An additional property of such
input signals is that they make the result of another valida-
tion method, residual analysis, easier to interpret since the
residuals then by (6a) will be uncorrelated with all input
components.
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(a) The OE-LTI-SOE (dashed) and the spectral analysis
estimate (solid) for an input generated by a minimum
phase filter.
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(b) The OE-LTI-SOE (dashed) and the spectral anal-
ysis estimate (solid) for an input generated by a non-
minimum phase filter.

Figure 1: A nonparametric frequency response estimate
will be a good approximation of the OE-LTI-SOE only
whenG0,OE(z) = Φyu(z)/Φu(z).

4. Conclusions

In this paper, it has been shown that it is beneficial to
use an input with the minimum phase property when ap-
proximating a nonlinear system with an LTI model. With
such an input, spectral and residual analysis can be used as
validation methods like for LTI systems.
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