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Abstract - In this paper we propose a method to model
nonlinear multivariable systems. We will use a state space
approach since this is inherently compatible with Multiple
Input, Multiple Output (MIMO) systems. The basic idea is
to fit first a linear model on the measured data, and to
extend that model so that it can grasp the nonlinear
behaviour of the system. The results are applied to a
physical system.

1. Introduction

Recently in the area of system identification, there has
been an increasing interest in the modelling of nonlinear
systems. This is because most real-life systems can be
modelled quite well with a linear model, but even better
results can be obtained with a nonlinear model. In this
work, we want to focus on the identification of
multivariable systems, using a state space approach.
Earlier work in this area includes Local Linear Models,
Linear Parameter Varying Systems or bilinear models
([3]). In this paper we use a different approach: first, a
linear state space model is fit through the Best Linear
Approximation of the system. Then, the linear model is
extended in order to capture the nonlinear behaviour.

The structure of the paper is the following: first, we
explain the identification procedure. Then, the
identification method is applied on data from a physical
nonlinear system for the SISO case and on simulated data
for the MIMO case.

2. Model and Identification

The classical discrete time linear state equation is given
by:

(1)

where  is the (n x 1) dimensional state vector, 

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( ) Du k( )+=

x k( ) u k( )

the (m x 1) input vector,  the (p x 1) output vector,
and , , , and  are the system matrices. We propose
to extend this model to:

(2)

where the column vector  contains static nonlinear
terms, composed by cross products between the elements
of the state vector. All possible product combinations
between state elements for a chosen set of degrees are
formed. The coefficients present in matrices , , , 
and  are to be determined by the identification
procedure described below.

For example, for order , degree , we have:

(3)

If a similarity transformation  is applied
to the state vector, the classical relationships
( ,  and ) still hold. The
relationship between  and  is not so trivial, but can
be computed easily by substitution.

The first step in the identification procedure is to
determine the Best Linear Approximation of the system.
This can be done in an easy way by utilizing specially
designed periodical excitation signals, namely Multisines.
For these signals, which are composed of sines at selected
frequencies, a fully custom amplitude spectrum can be set.
By applying different random phase realisations and
averaging the measured data, one can calculate the Best
Linear Approximation of the system ([5], [6], [7], [8]).
One can also use a single realisation to determine a linear
model of less good quality. Then a subspace identification
technique is used to fit a linear, discrete time, state space
model. Since periodic excitation signals are used to excite
the system, the identification can be performed easily in
the frequency domain ([1], [2]).

The linear state space model of the Best Linear
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Approximation (BLA) is then given by the following set
of equations:

(4)

The aim now is to determine system matrices , , ,
 and . We define the following cost function:

(5)

The minimisation of this cost function is a problem that is
nonlinear in the parameters. It can be solved iteratively in
the time domain, for instance with a Levenberg-Marquardt
routine for which starting values are needed. For , , 
and  we can use the matrices obtained from the Best
Linear Approximation. The starting value for  is set to
zero which implies that the iteration starts from the Best
Linear Approximation and that our nonlinear model will
perform at least as good as that model.

To compute the Jacobian, one also needs starting values
for the states. This can be seen in the following example,
where we compute the Jacobian for the elements of the
system matrix :

(6)

where element (i,j) of A is denoted as . If we define:

(7)

then it follows that:

(8)

The expressions for , ,  and
 are computed in the same way. From these

expressions, we conclude the following:

1. The calculation of the Jacobian has to be performed
recursively: to calculate ,  is
needed.

2. One also needs estimates of the states . To
obtain these, the calculated states from the previous
iteration in the Levenberg-Marquardt loop are used.
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Another issue that needs to be addressed is the rank
deficiency of the Jacobian . This deficiency exists due to
the non-uniqueness of the state space representation. As
mentioned before, a similarity transformation

 leaves the input-output behaviour
unaffected. As a consequence, the Jacobian  will not be
of full rank. This can be taken care of by using a truncated
Singular Value Decomposition (SVD) when computing
the pseudo inverse of  ([4]).

3. Results

3.1. SISO

The method described in the previous paragraph is applied
to an electrical circuit that simulates the behaviour of a
mass-spring-damper system with a nonlinear spring (this
circuit is also known as the “Silverbox”). The estimation
data set consists of 8 consecutive realisations (each 8192
samples) of a multisine. For validation purposes, a
sequence of white noise (40 700 data points) has been
applied to the system, with an increasing amplitude. At the
end of the sequence, the amplitude exceeds that of the
multisines from the estimation data set, so that the
extrapolation behaviour of the model can be investigated
(Fig. 1.).

Fig. 1. Estimation/Validation data set

The first step is to average the measured FRF’s of the 8
multisines, which results in the Best Linear
Approximation. A linear model (order ) is fitted
and validated (Fig. 2., Fig. 3.) It is clear that towards larger
amplitudes, the quality of the linear model drops
significantly.

The linear model is extended as described in the previous
section (degree ). After 30 iterations of the
Levenberg-Marquardt loop, the cost function does not
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decrease significantly any more. We can now compare the
errors of both models. For the calculation of the Root
Mean Square (RMS) value of the error signals, the first
200 samples have been discarded in order to eliminate the
transient behaviour. The RMS level of the error has
dropped with a factor of 25 (30 dB) from 14.4 mV for the
linear model to 0.57 mV for the nonlinear model.

Fig. 2. Averaged Frequency Response Function

Fig. 3. Validation test linear model

Fig. 4. Validation test nonlinear model
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3.2. MIMO

The MIMO case will be illustrated by means of a
simulation. We will try to model a nonlinear system with
two inputs and two outputs, with the following topology:

Fig. 5. Nonlinear MIMO System

The blocks  and  are discrete time, linear, dual
input, dual output systems, with the following parameters:

The two intermediate blocks with hyperbolic tangents
represent saturation and intermixing behaviour. The
parameters of these nonlinear blocks were chosen as
follows:

This system could be interpreted as a differential amplifier
(with low pass characteristics) which shows some
saturation behaviour and mixing of the two channels. To
identify this system, a single realisation of a multisine is
applied to both inputs at the same time. After removal of
the transients, a linear model is fitted (n = 4), and the
Levenberg-Marquardt loop is started (degree r = 2:5). To
validate the identified model parameters, a second
realisation of a multisine is applied to the Device Under
Test. The process of identification and validation is
performed 20 times (each with a new set of multisine
realisations), and the mean values of the error relative
RMS (Root Mean Square) values are given in Table 1. The
model error is reduced with a factor of about 40 (30 dB) in
comparison with a linear model. In fact, the error of the
nonlinear model can be arbitrarily decreased by increasing
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the degree , because the hyperbolic tangent function is a
function that needs an infinite number of polynomial
terms when expanded in a Taylor series.

4. Conclusions

In this paper we have introduced a new method to model
nonlinear multivariable systems. The model performs
quite well on measured data as well as in simulations.
Nevertheless, some issues still need to be addressed: a
stability criterion needs to be developed, as well as a
regularisation procedure to reduce the number of
parameters as the system order  becomes large.
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Table I: Relative RMS Error

Model

Linear 21.0 mV 21.2 mV

Nonlinear 0.55 mV 0.53 mV

y1 y2

r

n
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