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Abstract— We consider the problem of construct-
ing nonparametric prediction intervals for a NAR
model structure. Our approach relies on the external
bootstrap procedure [1]. This method is contrasted
with a more traditional approach relying on the Gaus-
sian strategy, showing improved results.

1. Introduction

A great deal of data in business, economics, engineer-
ing and the natural sciences occur in the form of time
series where observations are dependent. Linear time
series models provide powerful tools for analyzing time
series data when the models are correctly specified.
However, any parametric models are at best only an
approximation to the true underlying dynamics that
generate a given data set. Linear time series models
are often the starting point for modeling time series.

Many data in applications (e.g., sunspot, lynx and
blowfly data) exhibit nonlinear features such as non-
normality, nonlinearity between lagged variables and
heteroscedasticity. They require nonlinear models to
describe the law that generates the data. Common
nonlinear models are threshold autoregressive (TAR)
models, exponential autoregressive (EXPAR) models,
smooth-transition autoregressive (STAR) models, bi-
linear models, random coefficient models, autoregres-
sive conditional heteroscedastic (ARCH) models, see
e.g. [2]. However, nonlinear parametric modeling also
has its drawbacks. Most importantly, it requires an
a priori choice of parametric function classes for the
function of interest. Thus, nonlinear parametric mod-
eling implies the difficult choice of a model class. In
contrast, when using the nonparametric modeling ap-
proach, one can avoid this choice.

Forecasting of the future values is one of the most
popular applications of time series modeling. In or-
der to verify the accuracy of the forecast we need to
define the error of prediction, which can be treated
as a measure of uncertainty of the forecast. A closely
related problem is the construction of prediction in-
tervals for future observations. In this purpose, for
Gaussian data one uses a well-known strategy. On the
other hand, Gaussian prediction intervals perform not
very well for non-Gaussian series. In this paper, an

external bootstrap method will be proposed for this
purpose.

The bootstrap is a computer-intensive method that
provides answers to a large class of statistical inference
problems without stringent structural assumptions on
the underlying random process generating the data.
Since its introduction by Efron [4], the bootstrap has
found its application to a number of statistical prob-
lems, including many standard ones, where it has out-
performed the existing methodology as well as in many
complex problems involving independent data where
conventional approaches failed to provide satisfactory
answers. However, the generally perception that the
bootstrap is a general applicable method, giving accu-
rate results in all problems automatically, is mislead-
ing. An example of this appeared in Singh [5], which
points out the inadequacy of this resampling scheme
under dependence. A breakthrough was achieved with
block resampling, an idea that was put forward by Hall
[6] and others in various forms and in different infer-
ence problems. The most popular bootstrap methods
for dependent data are block, sieve [7], local and ex-
ternal bootstrap [1].

This paper is organized as follows. In Section 2
we describe nonlinear function estimation by LS-SVM
and the Nadaraya-Watson kernel. In Section 3 we
discuss methods of constructing predicting intervals
(Gaussian strategy and bootstrap strategy). Section 4
reports results on an artificial data set.

2. Nonparametric Autoregressive Models

2.1. NAR Structure

Given a time series {Yt, t = 1, ..., n} , in general, we can
assume that

Yt = g (Xt) + ν (Xt) et (1)

where Xt = (Yt−1, ..., Yt−p)
T , g and ν are unknown

functions, and {et} ∼ iid
(

0, σ2
)

. Instead of imposing
a specific form on g and ν, we only make some qual-
itative assumptions, such as that the functions g ∈
C∞ (R) and ν ∈ C∞ (R). Model (1) is called a non-
parametric autoregressive conditional heteroscedastic
(NARCH) model. The structure in (1) is very gen-
eral, making very few assumptions on how the data
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were generated. It allows heteroscedasticity. In this
paper we consider only a NAR structure (where ν (·)
is a constant).

2.2. Classes of nonparametric estimators

In this subsection we review some nonparamet-
ric methods for estimating the function g in (1).
Model (1) has the format of a nonlinear regression
problem for which many smoothing methods exist
when the observations are independent. Hart [3]
demonstrates that these methods can be ”borrowed”
for time series analysis where observations are corre-
lated by making use of the ”whitening by windowing
principle”. The kernel estimate (local averaging) is
due to [8]. The principle of complexity regularization
is due, e.g. to [9], in particular for least squares esti-
mates, see [10].

Nadaraya-Watson kernel estimate. A typi-
cal situation for an application to a time series
{Yt, t = 1, ..., n} is that the regressor vector X con-

sists of past time series values Xt = (Yt−1, ..., Yt−p)
T

.
Let K : R

p → R+ be a function called the kernel func-
tion, and let h > 0 be a bandwidth. For X ∈ R

p,
Xt = (Yt−1, ..., Yt−p)

T
and weights

wn,i (x) =
K

(

x−Xi

h

)

∑n

t=p+1
K

(

x−Xt

h

) (2)

where wn,i : R
p → R. The Nadaraya-Watson kernel

estimator in model (1) with ν (·) constant is given by

ĝn,NW (x) =

n
∑

i=p+1

wn,i (x) Yi. (3)

For X equal to the last observed pattern, X =
(Yn, Yn−1, ..., Yn−p+1)

T
this provides a one-step ahead

predictor for Yn+1. A k-step ahead predictor is given
if Yt in (3) is replaced by Yt−k+1

ĝn,NW,k (x) =

n
∑

i=p+1

wn′,i−k+1 (x) Yi, k = 1, 2, ...

(4)
where n′ = n − k + 1 − p.

LS-SVM regression. Consider the model

gn,LS(x) = wT ϕ(x) + b (5)

with so-called feature map ϕ : R
p → R

Dϕ , w ∈ R
Dϕ

and b ∈ R. Consider the regularized least squares cost
function [10]

min
w,e,b

J =
1

2
wT w +

γ

2

n
∑

t=p

e2
t

s.t. wT ϕ(xt) + b + et = yt ∀t = p + 1, . . . , n (6)

Then the dual solution is characterized by the follow-
ing linear system





0 1T
n

1n Ω + 1

γ
In





[

b

α

]

=

[

0

y

]

, (7)

where Ω ∈ R
N×N with Ωij = K(xi, xj) =

ϕ(xi)
T ϕ(xj), e.g. Ωij = K

(

xi−xj

h

)

for all i, j =

1, . . . , N and y = (y1, . . . , yn)T . The estimated model
can be evaluated at a new point x∗ ∈ R

p as follows

ĝn,LS(x) =

n
∑

t=p+1

αtK

(

x − Xt

h

)

+ b. (8)

3. Construction of prediction intervals

The confidence (prediction) interval for nonparam-
eteric regression falls into two parts, the first being
the construction of a confidence (prediction) interval
for the expected value of the estimator and the second
involving bias correction. In the statistical literature
a distinction is made between pivotal and nonpivotal
methods. Hall [11] pointed out that pivotal meth-
ods, for the problem of bootstrap prediction intervals,
should be preferred over nonpivotal methods.

Definition 1 (Pivotal quantities)
Let X = (X1, ...,Xn) be random variables with
unknown joint distribution F , and let T (F ) de-
note a real-valued parameter. A random variable
R (X,T (F )) is a pivotal quantity (or pivot) if the
distribution of R (X,T (F )) is independent of all
parameters. That is, if X ∼ F (x|T (F )), then
R (X,T (F )) has the same distribution for all values
of T (F ).

Given a function estimator ĝn (x) , confidence intervals
are constructed by using the asymptotic distribution
of a pivot statistic. Let R (g (x) , ĝn (x)) be a pivotal
statistic defined as

R (g (x) , ĝn (x)) =
ĝn (x) − g (x)

√

V (x)
, (9)

where V (x) is the variance of the function estimator
ĝn (x) . By following a procedure similar to that used
for constructing confidence intervals for the function
estimate, one can construct a prediction interval. In
the pivot (9), one simply replaces the standard devia-
tion of

√

V (x) by the standard deviation of prediction
√

σ2 (x) + V (x). In the homoscedastic case ν = σ2

can be estimated (see [12] and references therein).
The effect of bias depends very much on how bias is

corrected and there are different views amongst statis-
ticians as how this should be done (explicit bias correc-
tion or undersmoothing techniques). The problem of
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bias correction is described in the subsection “Gaus-
sian strategy” and the subsection “Bootstrap strat-
egy”.

3.1. Gaussian strategy

We first state the asymptotic distribution for the
Nadaraya-Watson kernel estimator (3) and give the
required assumptions. Let f (x) denote the density of
the lag vector at the point x. Then the asymptotic
normal distribution, denoted by N , for the Nadaraya-
Watson kernel estimator (3) is given by

√
nh (ĝn (x) − g (x))

d→ N (B (x) , V (x)) . (10)

The symbol
d→ defines equality in distribution. The

bias of the estimator ĝn is given by

B (x) =
1

2
c

5
2
0 dKf−1 (x)

(

g
′′

(x) f (x) + 2g
′

(x) f
′

(x)
)

,

(11)
and the variance is given by

V (x) = f−1 (x) cKσ2 (x) (12)

where cK =
∫

K2 (u) du, dK =
∫

u2K (u) du, c0 is

the constant such that hn
1
5 tends to c0 in probability

(see [14]). Inspecting the asymptotic bias term (11)
more closely reveals that the second-order derivatives
of g (x) have to exist. In fact, for (10) to hold this has
to be the case in a neighborhood of x. For this rea-
son one has to assume that g (x) ∈ C2 (R) . Because
both the density f (x) and the conditional variance
σ2 (x) enter the asymptotic variance (12), one also has
to assume that both are continuous and the latter is
positive on the support of f (x) . For instance, we can
estimate all the unknown terms in B (x) and V (x),
depending on g and f , by using the kernel technique
once more. A consistent bias estimate requires the es-
timation of second-order derivatives. Such estimates
may lead to a large variance, particularly if p is large
and the sample size n is small. Thus, it make sense to
compute prediction intervals without the bias correc-
tion.

From the asymptotic distribution (10), without the
bias term, one can derive an asymptotic (1 − α) per-
cent prediction interval for g (x) ,

P (ĝn(x) − zα
2

√

σ2(x) +
V (x)

nh
≤ g(x) ≤ ĝn(x)+

zα
2

√

σ2(x) +
V (x)

nh
) = 1 − α (13)

where zα
2

denotes the
(

1 − α
2

)

quantile of the normal
distribution.

3.2. Bootstrap strategy

Based on the theorems of [1] and [11] we consider an
alternative method that consists in estimating the dis-
tribution of the pivot

R (g (x) , ĝn (x)) =
ĝn (x) − g (x)

√

σ2 (x) + V̂ (x)
(14)

by an external bootstrap method. One approximates
the distribution of the pivot statistics R (g (x) , ĝn (x))
by the distribution of the bootstrapped statistics

T
(

ĝn,h2
(x), ĝ∗n,h1

(x)
)

=
ĝ∗n,h1

(x) − ĝn,h2
(x)

√

σ2 (x) + V̂ ∗ (x)
(15)

where ∗ denotes bootstrap counterparts and h1, h2

are smoothing kernel parameters (a typical choice is
h2 = ch1 with c = 0.75). Given new input data, m
simultaneous prediction intervals (applying the Bon-
feroni method [15]) with asymptotic level (1 − α) are
given by

IT = [ĝn,h1
(x) +

√

σ2 (x) + V̂ ∗ (x)Q α
2k

,

ĝn,h1
(x) +

√

σ2 (x) + V̂ ∗ (x)Q (1−α)
2k

] (16)

where Qα denote the α-quantile of the bootstrap dis-
tribution of the pivotal statistic T (ĝg (x0) , ĝ∗h (x0)) .
One has the following algorithm for the external boot-
strap procedure.

Algorithm 1 (External bootstrap)

1. The unknown probability model P was taken to be
Yt = g (Yt−1, ..., Yt−p)+et, with e1, ..., en indepen-
dent identically random errors drawn from some
unknown probability distribution function Fe.

2. Calculate ĝn (Xt) . The estimated errors are êt =
Yt− ĝn (Xt) , from which one obtains an estimated
version of F̂e with probability 1/n.

3. Draw the bootstrap residuals ê∗t from a two-point
centered distribution such that its second and third
moment fit the square and the cubic power of the

residual êt. For instance, one can choose ê∗t
i.i.d.∼

êt

(

Z1√
2

+
Z2

2−1

2

)

, with Z1 and Z2 being two inde-

pendent standard Normal random variables (see
[1]), also independent of êt.

4. Having generated Y ∗
t = ĝn(Xt) + e∗t t = 1, ..., n,

calculate the bootstrap estimates ĝ∗n (Xt) .

5. This whole proces must be repeated for example
B = 1000 times (see [13]).
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4. Illustrative example

To illustrate the prediction interval methods, we
present an example using the following data set. Con-
sider the nonlinear AR model defined on

Yt = 3.7Xt−1(1 − Xt−1) + et, t = 1, . . . , 100 (17)

where et
i.i.d.∼ U [−0.1, 0.1]. The logistic function, the
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Figure 1: The estimated regression function (dashdot lines)

and its associated 95% confidence intervals (dashed lines).

estimator and its associated 95% confidence intervals
are given in Figure 1 for both strategies. Figure 2
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Figure 2: The k-steps ahead, k = 1, . . . , 10, predictor (non

recurrent) and its associated 95% prediction intervals (dashed

lines). The Gaussian strategy fails in this case. The bootstrap

shows correct estimates.

shows the improvements of the prediction intervals
based on the bootstrap strategy in comparision
with the prediction intervals based on the Gaussian
strategy. Prediction intervals based on the bootstrap
strategy enclose both the k-steps ahead predictor and
the true underlying function.
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